Cargando…

Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages

A high density of microbes inhabits the intestine, helping with food digestion, vitamin synthesis, xenobiotic detoxification, pathogen resistance and immune system maturation. Crucial for human health, communities of commensal bacteria (collectively termed microbiota) benefit in return from a nutrie...

Descripción completa

Detalles Bibliográficos
Autores principales: Danne, Camille, Powrie, Fiona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shared Science Publishers OG 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878688/
https://www.ncbi.nlm.nih.gov/pubmed/29611556
http://dx.doi.org/10.15698/mic2018.04.626
_version_ 1783310880326287360
author Danne, Camille
Powrie, Fiona
author_facet Danne, Camille
Powrie, Fiona
author_sort Danne, Camille
collection PubMed
description A high density of microbes inhabits the intestine, helping with food digestion, vitamin synthesis, xenobiotic detoxification, pathogen resistance and immune system maturation. Crucial for human health, communities of commensal bacteria (collectively termed microbiota) benefit in return from a nutrient-rich environment. Host-microbiota mutualism results from a long-term co-adaptation. At barrier surfaces, immune cells distinguish harmful from commensal bacteria and tolerate non-self organisms at close proximity to the mucosa; gut inhabitants have developed strategies to ensure beneficial conditions in their preferred niche. So far, the complex dialogue of host-microbial mutualism is poorly understood. Helicobacter hepaticus is a member of the mouse microbiota that colonizes the lower intestine without inducing immune pathology. However, when there is a host maladaptation such as the absence of the anti-inflammatory cytokine interleukin 10 (IL-10) or its receptor IL-10R, H. hepaticus triggers aberrant IL-23-driven intestinal inflammation. This response results in major changes in the intestinal innate cell compartment, with the accumulation of inflammatory macrophages. Relying both on a bacterial trigger and on an immune defect, H. hepaticus-induced colitis in the context of IL-10/IL-10R axis deficiency shares many features of human inflammatory bowel diseases (IBD). In our study [Danne et al, Cell Host Microbe 22(6):733-745], we questioned the interactions between H. hepaticus and intestinal macrophages that promote mutualism. Our results show that H. hepaticus produces a large polysaccharide that triggers IL-10 production without a corresponding inflammatory response in macrophages. Moreover, H. hepaticus polysaccharide specifically induces an anti-inflammatory gene signature in vitro and in vivo, including transcriptional factors known as repressors of immune activation. This anti-inflammatory program depends on the TLR2/MSK/CREB pathway, which might be crucial to maintain mutualistic relationships at the intestinal interface.
format Online
Article
Text
id pubmed-5878688
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Shared Science Publishers OG
record_format MEDLINE/PubMed
spelling pubmed-58786882018-04-02 Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages Danne, Camille Powrie, Fiona Microb Cell Microbiology A high density of microbes inhabits the intestine, helping with food digestion, vitamin synthesis, xenobiotic detoxification, pathogen resistance and immune system maturation. Crucial for human health, communities of commensal bacteria (collectively termed microbiota) benefit in return from a nutrient-rich environment. Host-microbiota mutualism results from a long-term co-adaptation. At barrier surfaces, immune cells distinguish harmful from commensal bacteria and tolerate non-self organisms at close proximity to the mucosa; gut inhabitants have developed strategies to ensure beneficial conditions in their preferred niche. So far, the complex dialogue of host-microbial mutualism is poorly understood. Helicobacter hepaticus is a member of the mouse microbiota that colonizes the lower intestine without inducing immune pathology. However, when there is a host maladaptation such as the absence of the anti-inflammatory cytokine interleukin 10 (IL-10) or its receptor IL-10R, H. hepaticus triggers aberrant IL-23-driven intestinal inflammation. This response results in major changes in the intestinal innate cell compartment, with the accumulation of inflammatory macrophages. Relying both on a bacterial trigger and on an immune defect, H. hepaticus-induced colitis in the context of IL-10/IL-10R axis deficiency shares many features of human inflammatory bowel diseases (IBD). In our study [Danne et al, Cell Host Microbe 22(6):733-745], we questioned the interactions between H. hepaticus and intestinal macrophages that promote mutualism. Our results show that H. hepaticus produces a large polysaccharide that triggers IL-10 production without a corresponding inflammatory response in macrophages. Moreover, H. hepaticus polysaccharide specifically induces an anti-inflammatory gene signature in vitro and in vivo, including transcriptional factors known as repressors of immune activation. This anti-inflammatory program depends on the TLR2/MSK/CREB pathway, which might be crucial to maintain mutualistic relationships at the intestinal interface. Shared Science Publishers OG 2018-03-22 /pmc/articles/PMC5878688/ /pubmed/29611556 http://dx.doi.org/10.15698/mic2018.04.626 Text en https://creativecommons.org/licenses/by/4.0/ This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.
spellingShingle Microbiology
Danne, Camille
Powrie, Fiona
Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title_full Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title_fullStr Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title_full_unstemmed Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title_short Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
title_sort helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878688/
https://www.ncbi.nlm.nih.gov/pubmed/29611556
http://dx.doi.org/10.15698/mic2018.04.626
work_keys_str_mv AT dannecamille helicobacterhepaticuspolysaccharideinducesanantiinflammatoryresponseinintestinalmacrophages
AT powriefiona helicobacterhepaticuspolysaccharideinducesanantiinflammatoryresponseinintestinalmacrophages