Cargando…
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising...
Autores principales: | Dai, Mengxi, Zheng, Dezhi, Liu, Shucong, Zhang, Pengju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878910/ https://www.ncbi.nlm.nih.gov/pubmed/29743934 http://dx.doi.org/10.1155/2018/9871603 |
Ejemplares similares
-
Transformed common spatial pattern for motor imagery-based brain-computer interfaces
por: Ma, Zhen, et al.
Publicado: (2023) -
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework
por: Dai, Mengxi, et al.
Publicado: (2019) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022) -
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
por: Devlaminck, Dieter, et al.
Publicado: (2011)