Cargando…

Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors

Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hohmann, Ulrich, Santiago, Julia, Nicolet, Joël, Olsson, Vilde, Spiga, Fabio M., Hothorn, Ludwig A., Butenko, Melinka A., Hothorn, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879659/
https://www.ncbi.nlm.nih.gov/pubmed/29531026
http://dx.doi.org/10.1073/pnas.1714972115
_version_ 1783311034783629312
author Hohmann, Ulrich
Santiago, Julia
Nicolet, Joël
Olsson, Vilde
Spiga, Fabio M.
Hothorn, Ludwig A.
Butenko, Melinka A.
Hothorn, Michael
author_facet Hohmann, Ulrich
Santiago, Julia
Nicolet, Joël
Olsson, Vilde
Spiga, Fabio M.
Hothorn, Ludwig A.
Butenko, Melinka A.
Hothorn, Michael
author_sort Hohmann, Ulrich
collection PubMed
description Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor–coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor–coreceptor heteromerization in planta. A functional BRI1–HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development.
format Online
Article
Text
id pubmed-5879659
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-58796592018-04-03 Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors Hohmann, Ulrich Santiago, Julia Nicolet, Joël Olsson, Vilde Spiga, Fabio M. Hothorn, Ludwig A. Butenko, Melinka A. Hothorn, Michael Proc Natl Acad Sci U S A Biological Sciences Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor–coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor–coreceptor heteromerization in planta. A functional BRI1–HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development. National Academy of Sciences 2018-03-27 2018-03-12 /pmc/articles/PMC5879659/ /pubmed/29531026 http://dx.doi.org/10.1073/pnas.1714972115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Hohmann, Ulrich
Santiago, Julia
Nicolet, Joël
Olsson, Vilde
Spiga, Fabio M.
Hothorn, Ludwig A.
Butenko, Melinka A.
Hothorn, Michael
Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title_full Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title_fullStr Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title_full_unstemmed Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title_short Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors
title_sort mechanistic basis for the activation of plant membrane receptor kinases by serk-family coreceptors
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879659/
https://www.ncbi.nlm.nih.gov/pubmed/29531026
http://dx.doi.org/10.1073/pnas.1714972115
work_keys_str_mv AT hohmannulrich mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT santiagojulia mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT nicoletjoel mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT olssonvilde mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT spigafabiom mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT hothornludwiga mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT butenkomelinkaa mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors
AT hothornmichael mechanisticbasisfortheactivationofplantmembranereceptorkinasesbyserkfamilycoreceptors