Cargando…
Predicting cancer outcomes from histology and genomics using convolutional networks
Cancer histology reflects underlying molecular processes and disease progression and contains rich phenotypic information that is predictive of patient outcomes. In this study, we show a computational approach for learning patient outcomes from digital pathology images using deep learning to combine...
Autores principales: | Mobadersany, Pooya, Yousefi, Safoora, Amgad, Mohamed, Gutman, David A., Barnholtz-Sloan, Jill S., Velázquez Vega, José E., Brat, Daniel J., Cooper, Lee A. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879673/ https://www.ncbi.nlm.nih.gov/pubmed/29531073 http://dx.doi.org/10.1073/pnas.1717139115 |
Ejemplares similares
-
Robust single-cell Hi-C clustering by convolution- and random-walk–based imputation
por: Zhou, Jingtian, et al.
Publicado: (2019) -
Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes
por: Zhao, Tao, et al.
Publicado: (2019) -
Kras mutant genetically engineered mouse models of human cancers are genomically heterogeneous
por: Chung, Wei-Jen, et al.
Publicado: (2017) -
Multiscale effects of heating and cooling on genes and gene networks
por: Charlebois, Daniel A., et al.
Publicado: (2018) -
Definitive demonstration by synthesis of genome annotation completeness
por: Jaschke, Paul R., et al.
Publicado: (2019)