Cargando…
Structural changes of TasA in biofilm formation of Bacillus subtilis
Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879678/ https://www.ncbi.nlm.nih.gov/pubmed/29531041 http://dx.doi.org/10.1073/pnas.1718102115 |
_version_ | 1783311036431990784 |
---|---|
author | Diehl, Anne Roske, Yvette Ball, Linda Chowdhury, Anup Hiller, Matthias Molière, Noel Kramer, Regina Stöppler, Daniel Worth, Catherine L. Schlegel, Brigitte Leidert, Martina Cremer, Nils Erdmann, Natalja Lopez, Daniel Stephanowitz, Heike Krause, Eberhard van Rossum, Barth-Jan Schmieder, Peter Heinemann, Udo Turgay, Kürşad Akbey, Ümit Oschkinat, Hartmut |
author_facet | Diehl, Anne Roske, Yvette Ball, Linda Chowdhury, Anup Hiller, Matthias Molière, Noel Kramer, Regina Stöppler, Daniel Worth, Catherine L. Schlegel, Brigitte Leidert, Martina Cremer, Nils Erdmann, Natalja Lopez, Daniel Stephanowitz, Heike Krause, Eberhard van Rossum, Barth-Jan Schmieder, Peter Heinemann, Udo Turgay, Kürşad Akbey, Ümit Oschkinat, Hartmut |
author_sort | Diehl, Anne |
collection | PubMed |
description | Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. |
format | Online Article Text |
id | pubmed-5879678 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-58796782018-04-03 Structural changes of TasA in biofilm formation of Bacillus subtilis Diehl, Anne Roske, Yvette Ball, Linda Chowdhury, Anup Hiller, Matthias Molière, Noel Kramer, Regina Stöppler, Daniel Worth, Catherine L. Schlegel, Brigitte Leidert, Martina Cremer, Nils Erdmann, Natalja Lopez, Daniel Stephanowitz, Heike Krause, Eberhard van Rossum, Barth-Jan Schmieder, Peter Heinemann, Udo Turgay, Kürşad Akbey, Ümit Oschkinat, Hartmut Proc Natl Acad Sci U S A Physical Sciences Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. National Academy of Sciences 2018-03-27 2018-03-12 /pmc/articles/PMC5879678/ /pubmed/29531041 http://dx.doi.org/10.1073/pnas.1718102115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Diehl, Anne Roske, Yvette Ball, Linda Chowdhury, Anup Hiller, Matthias Molière, Noel Kramer, Regina Stöppler, Daniel Worth, Catherine L. Schlegel, Brigitte Leidert, Martina Cremer, Nils Erdmann, Natalja Lopez, Daniel Stephanowitz, Heike Krause, Eberhard van Rossum, Barth-Jan Schmieder, Peter Heinemann, Udo Turgay, Kürşad Akbey, Ümit Oschkinat, Hartmut Structural changes of TasA in biofilm formation of Bacillus subtilis |
title | Structural changes of TasA in biofilm formation of Bacillus subtilis |
title_full | Structural changes of TasA in biofilm formation of Bacillus subtilis |
title_fullStr | Structural changes of TasA in biofilm formation of Bacillus subtilis |
title_full_unstemmed | Structural changes of TasA in biofilm formation of Bacillus subtilis |
title_short | Structural changes of TasA in biofilm formation of Bacillus subtilis |
title_sort | structural changes of tasa in biofilm formation of bacillus subtilis |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879678/ https://www.ncbi.nlm.nih.gov/pubmed/29531041 http://dx.doi.org/10.1073/pnas.1718102115 |
work_keys_str_mv | AT diehlanne structuralchangesoftasainbiofilmformationofbacillussubtilis AT roskeyvette structuralchangesoftasainbiofilmformationofbacillussubtilis AT balllinda structuralchangesoftasainbiofilmformationofbacillussubtilis AT chowdhuryanup structuralchangesoftasainbiofilmformationofbacillussubtilis AT hillermatthias structuralchangesoftasainbiofilmformationofbacillussubtilis AT molierenoel structuralchangesoftasainbiofilmformationofbacillussubtilis AT kramerregina structuralchangesoftasainbiofilmformationofbacillussubtilis AT stopplerdaniel structuralchangesoftasainbiofilmformationofbacillussubtilis AT worthcatherinel structuralchangesoftasainbiofilmformationofbacillussubtilis AT schlegelbrigitte structuralchangesoftasainbiofilmformationofbacillussubtilis AT leidertmartina structuralchangesoftasainbiofilmformationofbacillussubtilis AT cremernils structuralchangesoftasainbiofilmformationofbacillussubtilis AT erdmannnatalja structuralchangesoftasainbiofilmformationofbacillussubtilis AT lopezdaniel structuralchangesoftasainbiofilmformationofbacillussubtilis AT stephanowitzheike structuralchangesoftasainbiofilmformationofbacillussubtilis AT krauseeberhard structuralchangesoftasainbiofilmformationofbacillussubtilis AT vanrossumbarthjan structuralchangesoftasainbiofilmformationofbacillussubtilis AT schmiederpeter structuralchangesoftasainbiofilmformationofbacillussubtilis AT heinemannudo structuralchangesoftasainbiofilmformationofbacillussubtilis AT turgaykursad structuralchangesoftasainbiofilmformationofbacillussubtilis AT akbeyumit structuralchangesoftasainbiofilmformationofbacillussubtilis AT oschkinathartmut structuralchangesoftasainbiofilmformationofbacillussubtilis |