Cargando…

Structural changes of TasA in biofilm formation of Bacillus subtilis

Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofi...

Descripción completa

Detalles Bibliográficos
Autores principales: Diehl, Anne, Roske, Yvette, Ball, Linda, Chowdhury, Anup, Hiller, Matthias, Molière, Noel, Kramer, Regina, Stöppler, Daniel, Worth, Catherine L., Schlegel, Brigitte, Leidert, Martina, Cremer, Nils, Erdmann, Natalja, Lopez, Daniel, Stephanowitz, Heike, Krause, Eberhard, van Rossum, Barth-Jan, Schmieder, Peter, Heinemann, Udo, Turgay, Kürşad, Akbey, Ümit, Oschkinat, Hartmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879678/
https://www.ncbi.nlm.nih.gov/pubmed/29531041
http://dx.doi.org/10.1073/pnas.1718102115
_version_ 1783311036431990784
author Diehl, Anne
Roske, Yvette
Ball, Linda
Chowdhury, Anup
Hiller, Matthias
Molière, Noel
Kramer, Regina
Stöppler, Daniel
Worth, Catherine L.
Schlegel, Brigitte
Leidert, Martina
Cremer, Nils
Erdmann, Natalja
Lopez, Daniel
Stephanowitz, Heike
Krause, Eberhard
van Rossum, Barth-Jan
Schmieder, Peter
Heinemann, Udo
Turgay, Kürşad
Akbey, Ümit
Oschkinat, Hartmut
author_facet Diehl, Anne
Roske, Yvette
Ball, Linda
Chowdhury, Anup
Hiller, Matthias
Molière, Noel
Kramer, Regina
Stöppler, Daniel
Worth, Catherine L.
Schlegel, Brigitte
Leidert, Martina
Cremer, Nils
Erdmann, Natalja
Lopez, Daniel
Stephanowitz, Heike
Krause, Eberhard
van Rossum, Barth-Jan
Schmieder, Peter
Heinemann, Udo
Turgay, Kürşad
Akbey, Ümit
Oschkinat, Hartmut
author_sort Diehl, Anne
collection PubMed
description Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level.
format Online
Article
Text
id pubmed-5879678
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-58796782018-04-03 Structural changes of TasA in biofilm formation of Bacillus subtilis Diehl, Anne Roske, Yvette Ball, Linda Chowdhury, Anup Hiller, Matthias Molière, Noel Kramer, Regina Stöppler, Daniel Worth, Catherine L. Schlegel, Brigitte Leidert, Martina Cremer, Nils Erdmann, Natalja Lopez, Daniel Stephanowitz, Heike Krause, Eberhard van Rossum, Barth-Jan Schmieder, Peter Heinemann, Udo Turgay, Kürşad Akbey, Ümit Oschkinat, Hartmut Proc Natl Acad Sci U S A Physical Sciences Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. National Academy of Sciences 2018-03-27 2018-03-12 /pmc/articles/PMC5879678/ /pubmed/29531041 http://dx.doi.org/10.1073/pnas.1718102115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Diehl, Anne
Roske, Yvette
Ball, Linda
Chowdhury, Anup
Hiller, Matthias
Molière, Noel
Kramer, Regina
Stöppler, Daniel
Worth, Catherine L.
Schlegel, Brigitte
Leidert, Martina
Cremer, Nils
Erdmann, Natalja
Lopez, Daniel
Stephanowitz, Heike
Krause, Eberhard
van Rossum, Barth-Jan
Schmieder, Peter
Heinemann, Udo
Turgay, Kürşad
Akbey, Ümit
Oschkinat, Hartmut
Structural changes of TasA in biofilm formation of Bacillus subtilis
title Structural changes of TasA in biofilm formation of Bacillus subtilis
title_full Structural changes of TasA in biofilm formation of Bacillus subtilis
title_fullStr Structural changes of TasA in biofilm formation of Bacillus subtilis
title_full_unstemmed Structural changes of TasA in biofilm formation of Bacillus subtilis
title_short Structural changes of TasA in biofilm formation of Bacillus subtilis
title_sort structural changes of tasa in biofilm formation of bacillus subtilis
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879678/
https://www.ncbi.nlm.nih.gov/pubmed/29531041
http://dx.doi.org/10.1073/pnas.1718102115
work_keys_str_mv AT diehlanne structuralchangesoftasainbiofilmformationofbacillussubtilis
AT roskeyvette structuralchangesoftasainbiofilmformationofbacillussubtilis
AT balllinda structuralchangesoftasainbiofilmformationofbacillussubtilis
AT chowdhuryanup structuralchangesoftasainbiofilmformationofbacillussubtilis
AT hillermatthias structuralchangesoftasainbiofilmformationofbacillussubtilis
AT molierenoel structuralchangesoftasainbiofilmformationofbacillussubtilis
AT kramerregina structuralchangesoftasainbiofilmformationofbacillussubtilis
AT stopplerdaniel structuralchangesoftasainbiofilmformationofbacillussubtilis
AT worthcatherinel structuralchangesoftasainbiofilmformationofbacillussubtilis
AT schlegelbrigitte structuralchangesoftasainbiofilmformationofbacillussubtilis
AT leidertmartina structuralchangesoftasainbiofilmformationofbacillussubtilis
AT cremernils structuralchangesoftasainbiofilmformationofbacillussubtilis
AT erdmannnatalja structuralchangesoftasainbiofilmformationofbacillussubtilis
AT lopezdaniel structuralchangesoftasainbiofilmformationofbacillussubtilis
AT stephanowitzheike structuralchangesoftasainbiofilmformationofbacillussubtilis
AT krauseeberhard structuralchangesoftasainbiofilmformationofbacillussubtilis
AT vanrossumbarthjan structuralchangesoftasainbiofilmformationofbacillussubtilis
AT schmiederpeter structuralchangesoftasainbiofilmformationofbacillussubtilis
AT heinemannudo structuralchangesoftasainbiofilmformationofbacillussubtilis
AT turgaykursad structuralchangesoftasainbiofilmformationofbacillussubtilis
AT akbeyumit structuralchangesoftasainbiofilmformationofbacillussubtilis
AT oschkinathartmut structuralchangesoftasainbiofilmformationofbacillussubtilis