Cargando…
Dosimetric Comparison of Treatment Plans Using Physical Wedge and Enhanced Dynamic Wedge for the Planning of Breast Radiotherapy
The aim of this study is to compare the physical wedge (PW) with enhanced dynamic wedge (EDW) to determine the difference in the dose distribution affecting the treated breast and the contralateral breast, lungs, heart, esophagus, spine, and surrounding skin in the radiotherapy of breast cancer. Com...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879823/ https://www.ncbi.nlm.nih.gov/pubmed/29628633 http://dx.doi.org/10.4103/jmp.JMP_40_17 |
Sumario: | The aim of this study is to compare the physical wedge (PW) with enhanced dynamic wedge (EDW) to determine the difference in the dose distribution affecting the treated breast and the contralateral breast, lungs, heart, esophagus, spine, and surrounding skin in the radiotherapy of breast cancer. Computed tomography (CT) data sets of 30 breast cancer patients were selected from the database for the study. The treatment plans which were executed with PW were re-planned with EDW without changing the beam parameters. Keeping the wedge angles same, the analytic anisotropic algorithm (AAA) with heterogeneity correction was used for dose calculation in all plans. The prescription was 50 Gy in 25 fractions. The dose- volume histogram (DVH) of the planning target volume (PTV) and critical structures of both PW and EDW plans were analyzed. The analysis showed that the maximum dose within the target volume is higher in EDW plan compared to PW plan. However the PTV conformity index (CI) remained the same in both plans. For all the critical structures, the EDW technique offered less dose compared to PW technique. The effect of volume of the contralateral breast on the dose to contralateral breast and the effect of volume of PTV breast for patients with carcinoma left breast on the dose to heart were studied and analyzed for the two wedges. No correlation between volumes and dose parameters was found for the two techniques. The number of monitor units to deliver a particular dose with EDW field is less than that of PW field due to change in wedge factor. As EDW produces less scattered dose to structures outside the treatment field, the risk of a second malignancy can be reduced with this technique. |
---|