Cargando…
A Bayesian Spatial Model to Predict Disease Status Using Imaging Data From Various Modalities
Relating disease status to imaging data stands to increase the clinical significance of neuroimaging studies. Many neurological and psychiatric disorders involve complex, systems-level alterations that manifest in functional and structural properties of the brain and possibly other clinical and biol...
Autores principales: | Xue, Wenqiong, Bowman, F. DuBois, Kang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879954/ https://www.ncbi.nlm.nih.gov/pubmed/29632471 http://dx.doi.org/10.3389/fnins.2018.00184 |
Ejemplares similares
-
A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity
por: Xue, Wenqiong, et al.
Publicado: (2015) -
Multimodal Imaging Signatures of Parkinson's Disease
por: Bowman, F. DuBois, et al.
Publicado: (2016) -
Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach
por: Illan, Ignacio A., et al.
Publicado: (2014) -
Editorial: Cross-Modal Learning: Adaptivity, Prediction and Interaction
por: Zhang, Jianwei, et al.
Publicado: (2022) -
Current Status of Stem Cell-Derived Therapies for Parkinson’s Disease: From Cell Assessment and Imaging Modalities to Clinical Trials
por: Jang, Se Eun, et al.
Publicado: (2020)