Cargando…

Personalized cancer therapy—leveraging a knowledge base for clinical decision-making

Next-generation sequencing (NGS), also known as massively parallel sequencing, is rapidly being incorporated into oncology practice. Interpretation of genomic reports and selecting treatments based on the tumor's genomic analysis becomes more and more complicated for the treating oncologist bec...

Descripción completa

Detalles Bibliográficos
Autores principales: Dumbrava, Ecaterina Ileana, Meric-Bernstam, Funda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880252/
https://www.ncbi.nlm.nih.gov/pubmed/29212833
http://dx.doi.org/10.1101/mcs.a001578
Descripción
Sumario:Next-generation sequencing (NGS), also known as massively parallel sequencing, is rapidly being incorporated into oncology practice. Interpretation of genomic reports and selecting treatments based on the tumor's genomic analysis becomes more and more complicated for the treating oncologist because of the use of larger panels covering dozens to hundreds of genes and the amount of rapidly emerging clinical/translational data. To help guide personalized treatments in oncology, The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT) at MD Anderson Cancer Center has developed a knowledge base, available at https://personalizedcancertherapy.org or https://pct.mdanderson.org (PCT). This knowledge base provides information on the function of common genomic alterations and their therapeutic implications. Here, we describe how such genomic information can be used by health-care providers to identify genomically matched therapies.