Cargando…

Dramatic Improvement of the Mechanical Strength of Silane-Modified Hydroxyapatite–Gelatin Composites via Processing with Cosolvent

[Image: see text] Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Huamin, Huang, Bo-Wen, Lee, Yan-Ting, Hu, Jun, Wong, Sing-Wai, Ko, Ching-Chang, You, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880507/
https://www.ncbi.nlm.nih.gov/pubmed/29623305
http://dx.doi.org/10.1021/acsomega.7b01924
Descripción
Sumario:[Image: see text] Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite–gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite–gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite–gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite–gelatin composite is a promising material for BTE application.