Cargando…
Synthesis and Combined Experimental and Theoretical Characterization of Dihydro-tetraaza-acenes
[Image: see text] We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880508/ https://www.ncbi.nlm.nih.gov/pubmed/29623149 http://dx.doi.org/10.1021/acs.jpcc.8b00985 |
Sumario: | [Image: see text] We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-phase electronic structures by means of ab initio density functional calculations employing an optimally tuned range-separated hybrid functional. By comparing with the parent linear oligoacenes (nA) and based on computed ionization potentials and electron affinities, we predict DHTAn molecules to be more stable than acenes of the same length, where we expect DHTAn molecules to be persistent at least up to n = 7 rings. We further exploit the analogy with nA by analyzing the entire intramolecular π-band structure of the DHTAn molecules. This clearly reveals that the additional two electrons donated by the dihydropyrazine group are delocalized over the entire molecule and contribute to its π-electron system. As a consequence, the symmetry of the frontier orbitals of DHTAn differs from that of the parent nA molecule. This also affects the UV–vis absorption spectra which have been measured for DHTA5, 6, and 7 dissolved in dimethyl sulfoxide and analyzed by means of excited state calculations within a time-dependent density functional theory framework. |
---|