Cargando…
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
The use of therapeutic peptides in various inflammatory diseases and autoimmune disorders has received considerable attention; however, the identification of anti-inflammatory peptides (AIPs) through wet-lab experimentation is expensive and often time consuming. Therefore, the development of novel c...
Autores principales: | Manavalan, Balachandran, Shin, Tae H., Kim, Myeong O., Lee, Gwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881105/ https://www.ncbi.nlm.nih.gov/pubmed/29636690 http://dx.doi.org/10.3389/fphar.2018.00276 |
Ejemplares similares
-
AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees
por: Manavalan, Balachandran, et al.
Publicado: (2019) -
PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
MLACP: machine-learning-based prediction of anticancer peptides
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine
por: Manavalan, Balachandran, et al.
Publicado: (2018)