Cargando…
An open experimental database for exploring inorganic materials
The use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experiment...
Autores principales: | Zakutayev, Andriy, Wunder, Nick, Schwarting, Marcus, Perkins, John D., White, Robert, Munch, Kristin, Tumas, William, Phillips, Caleb |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881410/ https://www.ncbi.nlm.nih.gov/pubmed/29611842 http://dx.doi.org/10.1038/sdata.2018.53 |
Ejemplares similares
-
Research data infrastructure for high-throughput experimental materials science
por: Talley, Kevin R., et al.
Publicado: (2021) -
High-Speed and High-Power Ferroelectric Switching Current Measurement Instrument for Materials with Large Coercive Voltage and Remanent Polarization
por: Yazawa, Keisuke, et al.
Publicado: (2022) -
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
por: Holder, Aaron M., et al.
Publicado: (2017) -
An ab initio electronic transport database for inorganic materials
por: Ricci, Francesco, et al.
Publicado: (2017) -
Addressing the critical need for open experimental databases in materials science
por: Horton, Matthew K., et al.
Publicado: (2021)