Cargando…
Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification
Positron emission tomography (PET) is a molecular medical imaging modality which is commonly used for neurodegenerative diseases diagnosis. Computer-aided diagnosis, based on medical image analysis, could help quantitative evaluation of brain diseases such as Alzheimer’s disease (AD). A novel method...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881487/ https://www.ncbi.nlm.nih.gov/pubmed/29637029 http://dx.doi.org/10.1109/JTEHM.2018.2796600 |
_version_ | 1783311330228305920 |
---|---|
collection | PubMed |
description | Positron emission tomography (PET) is a molecular medical imaging modality which is commonly used for neurodegenerative diseases diagnosis. Computer-aided diagnosis, based on medical image analysis, could help quantitative evaluation of brain diseases such as Alzheimer’s disease (AD). A novel method of ranking the effectiveness of brain volume of interest (VOI) to separate healthy control from AD brains PET images is presented in this paper. Brain images are first mapped into anatomical VOIs using an atlas. Histogram-based features are then extracted and used to select and rank VOIs according to the area under curve (AUC) parameter, which produces a hierarchy of the ability of VOIs to separate between groups of subjects. The top-ranked VOIs are then input into a support vector machine classifier. The developed method is evaluated on a local database image and compared to the known selection feature methods. Results show that using AUC outperforms classification results in the case of a two group separation. |
format | Online Article Text |
id | pubmed-5881487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | IEEE |
record_format | MEDLINE/PubMed |
spelling | pubmed-58814872018-04-10 Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification IEEE J Transl Eng Health Med Article Positron emission tomography (PET) is a molecular medical imaging modality which is commonly used for neurodegenerative diseases diagnosis. Computer-aided diagnosis, based on medical image analysis, could help quantitative evaluation of brain diseases such as Alzheimer’s disease (AD). A novel method of ranking the effectiveness of brain volume of interest (VOI) to separate healthy control from AD brains PET images is presented in this paper. Brain images are first mapped into anatomical VOIs using an atlas. Histogram-based features are then extracted and used to select and rank VOIs according to the area under curve (AUC) parameter, which produces a hierarchy of the ability of VOIs to separate between groups of subjects. The top-ranked VOIs are then input into a support vector machine classifier. The developed method is evaluated on a local database image and compared to the known selection feature methods. Results show that using AUC outperforms classification results in the case of a two group separation. IEEE 2018-03-16 /pmc/articles/PMC5881487/ /pubmed/29637029 http://dx.doi.org/10.1109/JTEHM.2018.2796600 Text en 2168-2372 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. |
spellingShingle | Article Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title | Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title_full | Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title_fullStr | Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title_full_unstemmed | Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title_short | Histogram-Based Features Selection and Volume of Interest Ranking for Brain PET Image Classification |
title_sort | histogram-based features selection and volume of interest ranking for brain pet image classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881487/ https://www.ncbi.nlm.nih.gov/pubmed/29637029 http://dx.doi.org/10.1109/JTEHM.2018.2796600 |
work_keys_str_mv | AT histogrambasedfeaturesselectionandvolumeofinterestrankingforbrainpetimageclassification AT histogrambasedfeaturesselectionandvolumeofinterestrankingforbrainpetimageclassification AT histogrambasedfeaturesselectionandvolumeofinterestrankingforbrainpetimageclassification AT histogrambasedfeaturesselectionandvolumeofinterestrankingforbrainpetimageclassification |