Cargando…
Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling
Mitochondrial abundance is dynamically regulated and was previously shown to be increased by Wnt/β-catenin signaling. Pgam5 is a mitochondrial phosphatase which is cleaved by the rhomboid protease presenilin-associated rhomboid-like protein (PARL) and released from membranes after mitochondrial stre...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881504/ https://www.ncbi.nlm.nih.gov/pubmed/29438981 http://dx.doi.org/10.1083/jcb.201708191 |
Sumario: | Mitochondrial abundance is dynamically regulated and was previously shown to be increased by Wnt/β-catenin signaling. Pgam5 is a mitochondrial phosphatase which is cleaved by the rhomboid protease presenilin-associated rhomboid-like protein (PARL) and released from membranes after mitochondrial stress. In this study, we show that Pgam5 interacts with the Wnt pathway component axin in the cytosol, blocks axin-mediated β-catenin degradation, and increases β-catenin levels and β-catenin–dependent transcription. Pgam5 stabilized β-catenin by inducing its dephosphorylation in an axin-dependent manner. Mitochondrial stress triggered by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to cytosolic release of endogenous Pgam5 and subsequent dephosphorylation of β-catenin, which was strongly diminished in Pgam5 and PARL knockout cells. Similarly, hypoxic stress generated cytosolic Pgam5 and led to stabilization of β-catenin, which was abolished by Pgam5 knockout. Cells stably expressing cytosolic Pgam5 exhibit elevated β-catenin levels and increased mitochondrial numbers. Our study reveals a novel mechanism by which damaged mitochondria might induce replenishment of the mitochondrial pool by cell-intrinsic activation of Wnt signaling via the Pgam5–β-catenin axis. |
---|