Cargando…
Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data
BACKGROUND: To enhance the utility of transfusion data for research, ideally every transfusion should be linked to a primary clinical indication. In electronic patient records, many diagnostic and procedural codes are registered, but unfortunately, it is usually not specified which one is the reason...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881526/ https://www.ncbi.nlm.nih.gov/pubmed/29636633 http://dx.doi.org/10.2147/CLEP.S147142 |
_version_ | 1783311339477794816 |
---|---|
author | van Hoeven, Loan R Kreuger, Aukje L Roes, Kit CB Kemper, Peter F Koffijberg, Hendrik Kranenburg, Floris J Rondeel, Jan MM Janssen, Mart P |
author_facet | van Hoeven, Loan R Kreuger, Aukje L Roes, Kit CB Kemper, Peter F Koffijberg, Hendrik Kranenburg, Floris J Rondeel, Jan MM Janssen, Mart P |
author_sort | van Hoeven, Loan R |
collection | PubMed |
description | BACKGROUND: To enhance the utility of transfusion data for research, ideally every transfusion should be linked to a primary clinical indication. In electronic patient records, many diagnostic and procedural codes are registered, but unfortunately, it is usually not specified which one is the reason for transfusion. Therefore, a method is needed to determine the most likely indication for transfusion in an automated way. STUDY DESIGN AND METHODS: An algorithm to identify the most likely transfusion indication was developed and evaluated against a gold standard based on the review of medical records for 234 cases by 2 experts. In a second step, information on misclassification was used to fine-tune the initial algorithm. The adapted algorithm predicts, out of all data available, the most likely indication for transfusion using information on medical specialism, surgical procedures, and diagnosis and procedure dates relative to the transfusion date. RESULTS: The adapted algorithm was able to predict 74.4% of indications in the sample correctly (extrapolated to the full data set 75.5%). A kappa score, which corrects for the number of options to choose from, was found of 0.63. This indicates that the algorithm performs substantially better than chance level. CONCLUSION: It is possible to use an automated algorithm to predict the indication for transfusion in terms of procedures and/or diagnoses. Before implementation of the algorithm in other data sets, the obtained results should be externally validated in an independent hospital data set. |
format | Online Article Text |
id | pubmed-5881526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58815262018-04-10 Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data van Hoeven, Loan R Kreuger, Aukje L Roes, Kit CB Kemper, Peter F Koffijberg, Hendrik Kranenburg, Floris J Rondeel, Jan MM Janssen, Mart P Clin Epidemiol Original Research BACKGROUND: To enhance the utility of transfusion data for research, ideally every transfusion should be linked to a primary clinical indication. In electronic patient records, many diagnostic and procedural codes are registered, but unfortunately, it is usually not specified which one is the reason for transfusion. Therefore, a method is needed to determine the most likely indication for transfusion in an automated way. STUDY DESIGN AND METHODS: An algorithm to identify the most likely transfusion indication was developed and evaluated against a gold standard based on the review of medical records for 234 cases by 2 experts. In a second step, information on misclassification was used to fine-tune the initial algorithm. The adapted algorithm predicts, out of all data available, the most likely indication for transfusion using information on medical specialism, surgical procedures, and diagnosis and procedure dates relative to the transfusion date. RESULTS: The adapted algorithm was able to predict 74.4% of indications in the sample correctly (extrapolated to the full data set 75.5%). A kappa score, which corrects for the number of options to choose from, was found of 0.63. This indicates that the algorithm performs substantially better than chance level. CONCLUSION: It is possible to use an automated algorithm to predict the indication for transfusion in terms of procedures and/or diagnoses. Before implementation of the algorithm in other data sets, the obtained results should be externally validated in an independent hospital data set. Dove Medical Press 2018-03-29 /pmc/articles/PMC5881526/ /pubmed/29636633 http://dx.doi.org/10.2147/CLEP.S147142 Text en © 2018 van Hoeven et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research van Hoeven, Loan R Kreuger, Aukje L Roes, Kit CB Kemper, Peter F Koffijberg, Hendrik Kranenburg, Floris J Rondeel, Jan MM Janssen, Mart P Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title | Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title_full | Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title_fullStr | Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title_full_unstemmed | Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title_short | Why was this transfusion given? Identifying clinical indications for blood transfusion in health care data |
title_sort | why was this transfusion given? identifying clinical indications for blood transfusion in health care data |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881526/ https://www.ncbi.nlm.nih.gov/pubmed/29636633 http://dx.doi.org/10.2147/CLEP.S147142 |
work_keys_str_mv | AT vanhoevenloanr whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT kreugeraukjel whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT roeskitcb whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT kemperpeterf whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT koffijberghendrik whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT kranenburgflorisj whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT rondeeljanmm whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata AT janssenmartp whywasthistransfusiongivenidentifyingclinicalindicationsforbloodtransfusioninhealthcaredata |