Cargando…

REG3A overexpression suppresses gastric cancer cell invasion, proliferation and promotes apoptosis through PI3K/Akt signaling pathway

Gastric cancer (GC) is the second most common cause of cancer-related deaths. In recent years some essential factors for resolution were identified, but the clinical trials still lack the effective methods to treat or monitor the disease progression. Regenerating islet-derived 3α (REG3A) is a member...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Yan-Song, Liao, Guang-Jun, Jiang, Ning-Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881806/
https://www.ncbi.nlm.nih.gov/pubmed/29512686
http://dx.doi.org/10.3892/ijmm.2018.3520
Descripción
Sumario:Gastric cancer (GC) is the second most common cause of cancer-related deaths. In recent years some essential factors for resolution were identified, but the clinical trials still lack the effective methods to treat or monitor the disease progression. Regenerating islet-derived 3α (REG3A) is a member of REG protein family. Previous studies have investigated the altered expression of REG3A in various cancers. In this investigtion we aimed at the biological function and the underlying molecular mechanism of REG3A in GC. We found that REG3A was significantly downregulated in GC and closely related with patient prognoses. REG3A overexpression suppressed the invasion and proliferation promoting apoptosis of GC cells. While REG3A knockdown promoted the invasion, and proliferation suppressing apoptosis of GC cells. It was further found that REG3A performed its biological functions mainly through phosphatidylinositol 3 kinase (PI3K)/Akt-GSK3β signaling pathway axis. REG3A may be a promising therapeutic strategy for GC.