Cargando…
A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
Over 26 million people worldwide suffer from heart failure annually. When the cause of heart failure cannot be identified, endomyocardial biopsy (EMB) represents the gold-standard for the evaluation of disease. However, manual EMB interpretation has high inter-rater variability. Deep convolutional n...
Autores principales: | Nirschl, Jeffrey J., Janowczyk, Andrew, Peyster, Eliot G., Frank, Renee, Margulies, Kenneth B., Feldman, Michael D., Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882098/ https://www.ncbi.nlm.nih.gov/pubmed/29614076 http://dx.doi.org/10.1371/journal.pone.0192726 |
Ejemplares similares
-
Advanced Morphologic Analysis for Diagnosing Allograft Rejection: The Case of Cardiac Transplant Rejection
por: Peyster, Eliot G., et al.
Publicado: (2018) -
An automated computational image analysis pipeline for histological grading of cardiac allograft rejection
por: Peyster, Eliot G, et al.
Publicado: (2021) -
Reply: In Situ Immune Profiling Identifies Immune Players Involved in Allograft Rejection: A Call for Precision Medicine
por: Peyster, Eliot G., et al.
Publicado: (2020) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016) -
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
por: Janowczyk, Andrew, et al.
Publicado: (2016)