Cargando…
On the convergence rates of kernel estimator and hazard estimator for widely dependent samples
In this paper, we establish a Bernstein-type inequality for widely orthant dependent random variables, and obtain the rates of strong convergence for kernel estimators of density and hazard functions, under some suitable conditions.
Autores principales: | Li, Yongming, Zhou, Yong, Liu, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882648/ https://www.ncbi.nlm.nih.gov/pubmed/29628747 http://dx.doi.org/10.1186/s13660-018-1659-1 |
Ejemplares similares
-
Kernel bandwidth optimization in spike rate estimation
por: Shimazaki, Hideaki, et al.
Publicado: (2009) -
Multidimensional kernel estimation
por: Milosevic, Vukasin
Publicado: (2015) -
Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation
por: Chen, Rongda, et al.
Publicado: (2013) -
Contingent Kernel Density Estimation
por: Fortmann-Roe, Scott, et al.
Publicado: (2012) -
State-dependent Gaussian kernel-based power spectrum modification for accurate instantaneous heart rate estimation
por: Chung, Heewon, et al.
Publicado: (2019)