Cargando…
Hardy-type inequalities in fractional h-discrete calculus
The first power weighted version of Hardy’s inequality can be rewritten as [Formula: see text] where the constant [Formula: see text] is sharp. This inequality holds in the reversed direction when [Formula: see text] . In this paper we prove and discuss some discrete analogues of Hardy-type inequali...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882665/ https://www.ncbi.nlm.nih.gov/pubmed/29628749 http://dx.doi.org/10.1186/s13660-018-1662-6 |
_version_ | 1783311493200084992 |
---|---|
author | Persson, Lars-Erik Oinarov, Ryskul Shaimardan, Serikbol |
author_facet | Persson, Lars-Erik Oinarov, Ryskul Shaimardan, Serikbol |
author_sort | Persson, Lars-Erik |
collection | PubMed |
description | The first power weighted version of Hardy’s inequality can be rewritten as [Formula: see text] where the constant [Formula: see text] is sharp. This inequality holds in the reversed direction when [Formula: see text] . In this paper we prove and discuss some discrete analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we prove that the corresponding constants are sharp. |
format | Online Article Text |
id | pubmed-5882665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-58826652018-04-05 Hardy-type inequalities in fractional h-discrete calculus Persson, Lars-Erik Oinarov, Ryskul Shaimardan, Serikbol J Inequal Appl Research The first power weighted version of Hardy’s inequality can be rewritten as [Formula: see text] where the constant [Formula: see text] is sharp. This inequality holds in the reversed direction when [Formula: see text] . In this paper we prove and discuss some discrete analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we prove that the corresponding constants are sharp. Springer International Publishing 2018-04-04 2018 /pmc/articles/PMC5882665/ /pubmed/29628749 http://dx.doi.org/10.1186/s13660-018-1662-6 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Persson, Lars-Erik Oinarov, Ryskul Shaimardan, Serikbol Hardy-type inequalities in fractional h-discrete calculus |
title | Hardy-type inequalities in fractional h-discrete calculus |
title_full | Hardy-type inequalities in fractional h-discrete calculus |
title_fullStr | Hardy-type inequalities in fractional h-discrete calculus |
title_full_unstemmed | Hardy-type inequalities in fractional h-discrete calculus |
title_short | Hardy-type inequalities in fractional h-discrete calculus |
title_sort | hardy-type inequalities in fractional h-discrete calculus |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882665/ https://www.ncbi.nlm.nih.gov/pubmed/29628749 http://dx.doi.org/10.1186/s13660-018-1662-6 |
work_keys_str_mv | AT perssonlarserik hardytypeinequalitiesinfractionalhdiscretecalculus AT oinarovryskul hardytypeinequalitiesinfractionalhdiscretecalculus AT shaimardanserikbol hardytypeinequalitiesinfractionalhdiscretecalculus |