Cargando…

Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland

Taphonomic analysis of fossil material can benefit from including the results of actualistic decay experiments. This is crucial in determining the autochthony or allochthony of fossils of juvenile and adult Isisfordia duncani, a basal eusuchian from the Lower Cretaceous (upper Albian) distal-fluvial...

Descripción completa

Detalles Bibliográficos
Autores principales: Syme, Caitlin E., Salisbury, Steven W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882695/
https://www.ncbi.nlm.nih.gov/pubmed/29657771
http://dx.doi.org/10.1098/rsos.171651
Descripción
Sumario:Taphonomic analysis of fossil material can benefit from including the results of actualistic decay experiments. This is crucial in determining the autochthony or allochthony of fossils of juvenile and adult Isisfordia duncani, a basal eusuchian from the Lower Cretaceous (upper Albian) distal-fluvial-deltaic lower Winton Formation near Isisford. The taphonomic characteristics of the I. duncani fossils were documented using a combination of traditional taphonomic analysis alongside already published actualistic decay data from juvenile Crocodylus porosus carcasses. We found that the I. duncani holotype, paratypes and referred specimens show little signs of weathering and no signs of abrasion. Disarticulated skeletal elements are often found in close proximity to the rest of the otherwise articulated skeleton. The isolated and disarticulated skeletal elements identified, commonly cranial, maxillary and mandibular elements, are typical of lag deposits. The holotype QM F36211 and paratype QM F34642 were classified as autochthonous, and the remaining I. duncani paratypes and referred specimens are parautochthonous. We propose that I. duncani inhabited upper and lower delta plains near the Eromanga Sea in life. Their carcasses were buried in sediment-laden floodwaters in delta plain overbank and distributary channel deposits. Future studies should refer to I. duncani as a brackish water tolerant species.