Cargando…
Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice
The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make cho...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882864/ https://www.ncbi.nlm.nih.gov/pubmed/29643773 http://dx.doi.org/10.3389/fncom.2018.00022 |
_version_ | 1783311539610058752 |
---|---|
author | Balasubramani, Pragathi P. Moreno-Bote, Rubén Hayden, Benjamin Y. |
author_facet | Balasubramani, Pragathi P. Moreno-Bote, Rubén Hayden, Benjamin Y. |
author_sort | Balasubramani, Pragathi P. |
collection | PubMed |
description | The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies. |
format | Online Article Text |
id | pubmed-5882864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58828642018-04-11 Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice Balasubramani, Pragathi P. Moreno-Bote, Rubén Hayden, Benjamin Y. Front Comput Neurosci Neuroscience The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies. Frontiers Media S.A. 2018-03-28 /pmc/articles/PMC5882864/ /pubmed/29643773 http://dx.doi.org/10.3389/fncom.2018.00022 Text en Copyright © 2018 Balasubramani, Moreno-Bote and Hayden. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Balasubramani, Pragathi P. Moreno-Bote, Rubén Hayden, Benjamin Y. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title | Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title_full | Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title_fullStr | Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title_full_unstemmed | Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title_short | Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice |
title_sort | using a simple neural network to delineate some principles of distributed economic choice |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882864/ https://www.ncbi.nlm.nih.gov/pubmed/29643773 http://dx.doi.org/10.3389/fncom.2018.00022 |
work_keys_str_mv | AT balasubramanipragathip usingasimpleneuralnetworktodelineatesomeprinciplesofdistributedeconomicchoice AT morenoboteruben usingasimpleneuralnetworktodelineatesomeprinciplesofdistributedeconomicchoice AT haydenbenjaminy usingasimpleneuralnetworktodelineatesomeprinciplesofdistributedeconomicchoice |