Cargando…

Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables

Individuals with depression differ substantially in their response to treatment with antidepressants. Specific predictors explain only a small proportion of these differences. To meaningfully predict who will respond to which antidepressant, it may be necessary to combine multiple biomarkers and cli...

Descripción completa

Detalles Bibliográficos
Autores principales: Iniesta, Raquel, Hodgson, Karen, Stahl, Daniel, Malki, Karim, Maier, Wolfgang, Rietschel, Marcella, Mors, Ole, Hauser, Joanna, Henigsberg, Neven, Dernovsek, Mojca Zvezdana, Souery, Daniel, Dobson, Richard, Aitchison, Katherine J., Farmer, Anne, McGuffin, Peter, Lewis, Cathryn M., Uher, Rudolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882876/
https://www.ncbi.nlm.nih.gov/pubmed/29615645
http://dx.doi.org/10.1038/s41598-018-23584-z
_version_ 1783311542396125184
author Iniesta, Raquel
Hodgson, Karen
Stahl, Daniel
Malki, Karim
Maier, Wolfgang
Rietschel, Marcella
Mors, Ole
Hauser, Joanna
Henigsberg, Neven
Dernovsek, Mojca Zvezdana
Souery, Daniel
Dobson, Richard
Aitchison, Katherine J.
Farmer, Anne
McGuffin, Peter
Lewis, Cathryn M.
Uher, Rudolf
author_facet Iniesta, Raquel
Hodgson, Karen
Stahl, Daniel
Malki, Karim
Maier, Wolfgang
Rietschel, Marcella
Mors, Ole
Hauser, Joanna
Henigsberg, Neven
Dernovsek, Mojca Zvezdana
Souery, Daniel
Dobson, Richard
Aitchison, Katherine J.
Farmer, Anne
McGuffin, Peter
Lewis, Cathryn M.
Uher, Rudolf
author_sort Iniesta, Raquel
collection PubMed
description Individuals with depression differ substantially in their response to treatment with antidepressants. Specific predictors explain only a small proportion of these differences. To meaningfully predict who will respond to which antidepressant, it may be necessary to combine multiple biomarkers and clinical variables. Using statistical learning on common genetic variants and clinical information in a training sample of 280 individuals randomly allocated to 12-week treatment with antidepressants escitalopram or nortriptyline, we derived models to predict remission with each antidepressant drug. We tested the reproducibility of each prediction in a validation set of 150 participants not used in model derivation. An elastic net logistic model based on eleven genetic and six clinical variables predicted remission with escitalopram in the validation dataset with area under the curve 0.77 (95%CI; 0.66-0.88; p = 0.004), explaining approximately 30% of variance in who achieves remission. A model derived from 20 genetic variables predicted remission with nortriptyline in the validation dataset with an area under the curve 0.77 (95%CI; 0.65-0.90; p < 0.001), explaining approximately 36% of variance in who achieves remission. The predictive models were antidepressant drug-specific. Validated drug-specific predictions suggest that a relatively small number of genetic and clinical variables can help select treatment between escitalopram and nortriptyline.
format Online
Article
Text
id pubmed-5882876
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58828762018-04-09 Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables Iniesta, Raquel Hodgson, Karen Stahl, Daniel Malki, Karim Maier, Wolfgang Rietschel, Marcella Mors, Ole Hauser, Joanna Henigsberg, Neven Dernovsek, Mojca Zvezdana Souery, Daniel Dobson, Richard Aitchison, Katherine J. Farmer, Anne McGuffin, Peter Lewis, Cathryn M. Uher, Rudolf Sci Rep Article Individuals with depression differ substantially in their response to treatment with antidepressants. Specific predictors explain only a small proportion of these differences. To meaningfully predict who will respond to which antidepressant, it may be necessary to combine multiple biomarkers and clinical variables. Using statistical learning on common genetic variants and clinical information in a training sample of 280 individuals randomly allocated to 12-week treatment with antidepressants escitalopram or nortriptyline, we derived models to predict remission with each antidepressant drug. We tested the reproducibility of each prediction in a validation set of 150 participants not used in model derivation. An elastic net logistic model based on eleven genetic and six clinical variables predicted remission with escitalopram in the validation dataset with area under the curve 0.77 (95%CI; 0.66-0.88; p = 0.004), explaining approximately 30% of variance in who achieves remission. A model derived from 20 genetic variables predicted remission with nortriptyline in the validation dataset with an area under the curve 0.77 (95%CI; 0.65-0.90; p < 0.001), explaining approximately 36% of variance in who achieves remission. The predictive models were antidepressant drug-specific. Validated drug-specific predictions suggest that a relatively small number of genetic and clinical variables can help select treatment between escitalopram and nortriptyline. Nature Publishing Group UK 2018-04-03 /pmc/articles/PMC5882876/ /pubmed/29615645 http://dx.doi.org/10.1038/s41598-018-23584-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Iniesta, Raquel
Hodgson, Karen
Stahl, Daniel
Malki, Karim
Maier, Wolfgang
Rietschel, Marcella
Mors, Ole
Hauser, Joanna
Henigsberg, Neven
Dernovsek, Mojca Zvezdana
Souery, Daniel
Dobson, Richard
Aitchison, Katherine J.
Farmer, Anne
McGuffin, Peter
Lewis, Cathryn M.
Uher, Rudolf
Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title_full Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title_fullStr Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title_full_unstemmed Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title_short Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
title_sort antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882876/
https://www.ncbi.nlm.nih.gov/pubmed/29615645
http://dx.doi.org/10.1038/s41598-018-23584-z
work_keys_str_mv AT iniestaraquel antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT hodgsonkaren antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT stahldaniel antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT malkikarim antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT maierwolfgang antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT rietschelmarcella antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT morsole antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT hauserjoanna antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT henigsbergneven antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT dernovsekmojcazvezdana antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT souerydaniel antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT dobsonrichard antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT aitchisonkatherinej antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT farmeranne antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT mcguffinpeter antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT lewiscathrynm antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables
AT uherrudolf antidepressantdrugspecificpredictionofdepressiontreatmentoutcomesfromgeneticandclinicalvariables