Cargando…

A porcine ex vivo model of pigmentary glaucoma

Pigment dispersion can lead to pigmentary glaucoma, a poorly understood condition of younger myopic eyes with fluctuating high intraocular pressure. It has been difficult to investigate its pathogenesis without a model similar to human eyes in size and behavior. Here we present a porcine ex vivo mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Yalong, Waxman, Susannah, Wang, Chao, Loewen, Ralitsa T., Sun, Ming, Loewen, Nils A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882895/
https://www.ncbi.nlm.nih.gov/pubmed/29615741
http://dx.doi.org/10.1038/s41598-018-23861-x
Descripción
Sumario:Pigment dispersion can lead to pigmentary glaucoma, a poorly understood condition of younger myopic eyes with fluctuating high intraocular pressure. It has been difficult to investigate its pathogenesis without a model similar to human eyes in size and behavior. Here we present a porcine ex vivo model that recreates several features of pigmentary glaucoma, including intraocular hypertension, accumulation of pigment in the trabecular meshwork, and declining phagocytosis. We found that trabecular meshwork cells regulate outflow, form actin stress fibers, and have a decreased phagocytic activity. Gene expression microarrays and a pathway analysis of TM monolayers as well as ex vivo anterior segment perfusion cultures indicated that RhoA plays a central role in regulating the cytoskeleton, motility, and phagocytosis in the trabecular meshwork, providing new insights and targets to investigate in pigmentary glaucoma.