Cargando…

Multivariate Granger causality unveils directed parietal to prefrontal cortex connectivity during task-free MRI

While a large body of research has focused on the study of functional brain “connectivity”, few investigators have focused on directionality of brain-brain interactions which, in spite of the mostly bidirectional anatomical substrates, cannot be assumed to be symmetrical. We employ a multivariate Gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Duggento, Andrea, Passamonti, Luca, Valenza, Gaetano, Barbieri, Riccardo, Guerrisi, Maria, Toschi, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882904/
https://www.ncbi.nlm.nih.gov/pubmed/29615790
http://dx.doi.org/10.1038/s41598-018-23996-x
Descripción
Sumario:While a large body of research has focused on the study of functional brain “connectivity”, few investigators have focused on directionality of brain-brain interactions which, in spite of the mostly bidirectional anatomical substrates, cannot be assumed to be symmetrical. We employ a multivariate Granger Causality-based approach to estimating directed in-network interactions and quantify its advantages using extensive realistic synthetic BOLD data simulations to match Human Connectome Project (HCP) data specification. We then apply our framework to resting state functional MRI (rs-fMRI) data provided by the HCP to estimate the directed connectome of the human brain. We show that the functional interactions between parietal and prefrontal cortices commonly observed in rs-fMRI studies are not symmetrical, but consists of directional connectivity from parietal areas to prefrontal cortices rather than vice versa. These effects are localized within the same hemisphere and do not generalize to cross-hemispheric functional interactions. Our data are consistent with neurophysiological evidence that posterior parietal cortices involved in processing and integration of multi-sensory information modulate the function of more anterior prefrontal regions implicated in action control and goal-directed behaviour. The directionality of functional connectivity can provide an additional layer of information in interpreting rs-fMRI studies both in health and disease.