Cargando…

Genome-wide screen for universal individual identification SNPs based on the HapMap and 1000 Genomes databases

Differences among SNP panels for individual identification in SNP-selecting and populations led to few common SNPs, compromising their universal applicability. To screen all universal SNPs, we performed a genome-wide SNP mining in multiple populations based on HapMap and 1000Genomes databases. SNPs...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Erwen, Liu, Changhui, Zheng, Jingjing, Han, Xiaolong, Du, Weian, Huang, Yuanjian, Li, Chengshi, Wang, Xiaoguang, Tong, Dayue, Ou, Xueling, Sun, Hongyu, Zeng, Zhaoshu, Liu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882920/
https://www.ncbi.nlm.nih.gov/pubmed/29615764
http://dx.doi.org/10.1038/s41598-018-23888-0
Descripción
Sumario:Differences among SNP panels for individual identification in SNP-selecting and populations led to few common SNPs, compromising their universal applicability. To screen all universal SNPs, we performed a genome-wide SNP mining in multiple populations based on HapMap and 1000Genomes databases. SNPs with high minor allele frequencies (MAF) in 37 populations were selected. With MAF from ≥0.35 to ≥0.43, the number of selected SNPs decreased from 2769 to 0. A total of 117 SNPs with MAF ≥0.39 have no linkage disequilibrium with each other in every population. For 116 of the 117 SNPs, cumulative match probability (CMP) ranged from 2.01 × 10–48 to 1.93 × 10–50 and cumulative exclusion probability (CEP) ranged from 0.9999999996653 to 0.9999999999945. In 134 tested Han samples, 110 of the 117 SNPs remained within high MAF and conformed to Hardy-Weinberg equilibrium, with CMP = 4.70 × 10–47 and CEP = 0.999999999862. By analyzing the same number of autosomal SNPs as in the HID-Ion AmpliSeq Identity Panel, i.e. 90 randomized out of the 110 SNPs, our panel yielded preferable CMP and CEP. Taken together, the 110-SNPs panel is advantageous for forensic test, and this study provided plenty of highly informative SNPs for compiling final universal panels.