Cargando…
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sust...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882928/ https://www.ncbi.nlm.nih.gov/pubmed/29615797 http://dx.doi.org/10.1038/s41598-018-23765-w |
_version_ | 1783311554585821184 |
---|---|
author | Krauss, Patrick Metzner, Claus Schilling, Achim Tziridis, Konstantin Traxdorf, Maximilian Wollbrink, Andreas Rampp, Stefan Pantev, Christo Schulze, Holger |
author_facet | Krauss, Patrick Metzner, Claus Schilling, Achim Tziridis, Konstantin Traxdorf, Maximilian Wollbrink, Andreas Rampp, Stefan Pantev, Christo Schulze, Holger |
author_sort | Krauss, Patrick |
collection | PubMed |
description | Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI). |
format | Online Article Text |
id | pubmed-5882928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58829282018-04-09 A statistical method for analyzing and comparing spatiotemporal cortical activation patterns Krauss, Patrick Metzner, Claus Schilling, Achim Tziridis, Konstantin Traxdorf, Maximilian Wollbrink, Andreas Rampp, Stefan Pantev, Christo Schulze, Holger Sci Rep Article Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI). Nature Publishing Group UK 2018-04-03 /pmc/articles/PMC5882928/ /pubmed/29615797 http://dx.doi.org/10.1038/s41598-018-23765-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Krauss, Patrick Metzner, Claus Schilling, Achim Tziridis, Konstantin Traxdorf, Maximilian Wollbrink, Andreas Rampp, Stefan Pantev, Christo Schulze, Holger A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title | A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title_full | A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title_fullStr | A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title_full_unstemmed | A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title_short | A statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
title_sort | statistical method for analyzing and comparing spatiotemporal cortical activation patterns |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882928/ https://www.ncbi.nlm.nih.gov/pubmed/29615797 http://dx.doi.org/10.1038/s41598-018-23765-w |
work_keys_str_mv | AT krausspatrick astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT metznerclaus astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT schillingachim astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT tziridiskonstantin astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT traxdorfmaximilian astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT wollbrinkandreas astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT ramppstefan astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT pantevchristo astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT schulzeholger astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT krausspatrick statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT metznerclaus statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT schillingachim statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT tziridiskonstantin statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT traxdorfmaximilian statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT wollbrinkandreas statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT ramppstefan statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT pantevchristo statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns AT schulzeholger statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns |