Cargando…

A statistical method for analyzing and comparing spatiotemporal cortical activation patterns

Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sust...

Descripción completa

Detalles Bibliográficos
Autores principales: Krauss, Patrick, Metzner, Claus, Schilling, Achim, Tziridis, Konstantin, Traxdorf, Maximilian, Wollbrink, Andreas, Rampp, Stefan, Pantev, Christo, Schulze, Holger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882928/
https://www.ncbi.nlm.nih.gov/pubmed/29615797
http://dx.doi.org/10.1038/s41598-018-23765-w
_version_ 1783311554585821184
author Krauss, Patrick
Metzner, Claus
Schilling, Achim
Tziridis, Konstantin
Traxdorf, Maximilian
Wollbrink, Andreas
Rampp, Stefan
Pantev, Christo
Schulze, Holger
author_facet Krauss, Patrick
Metzner, Claus
Schilling, Achim
Tziridis, Konstantin
Traxdorf, Maximilian
Wollbrink, Andreas
Rampp, Stefan
Pantev, Christo
Schulze, Holger
author_sort Krauss, Patrick
collection PubMed
description Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI).
format Online
Article
Text
id pubmed-5882928
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58829282018-04-09 A statistical method for analyzing and comparing spatiotemporal cortical activation patterns Krauss, Patrick Metzner, Claus Schilling, Achim Tziridis, Konstantin Traxdorf, Maximilian Wollbrink, Andreas Rampp, Stefan Pantev, Christo Schulze, Holger Sci Rep Article Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI). Nature Publishing Group UK 2018-04-03 /pmc/articles/PMC5882928/ /pubmed/29615797 http://dx.doi.org/10.1038/s41598-018-23765-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Krauss, Patrick
Metzner, Claus
Schilling, Achim
Tziridis, Konstantin
Traxdorf, Maximilian
Wollbrink, Andreas
Rampp, Stefan
Pantev, Christo
Schulze, Holger
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title_full A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title_fullStr A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title_full_unstemmed A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title_short A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
title_sort statistical method for analyzing and comparing spatiotemporal cortical activation patterns
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882928/
https://www.ncbi.nlm.nih.gov/pubmed/29615797
http://dx.doi.org/10.1038/s41598-018-23765-w
work_keys_str_mv AT krausspatrick astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT metznerclaus astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT schillingachim astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT tziridiskonstantin astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT traxdorfmaximilian astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT wollbrinkandreas astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT ramppstefan astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT pantevchristo astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT schulzeholger astatisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT krausspatrick statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT metznerclaus statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT schillingachim statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT tziridiskonstantin statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT traxdorfmaximilian statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT wollbrinkandreas statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT ramppstefan statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT pantevchristo statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns
AT schulzeholger statisticalmethodforanalyzingandcomparingspatiotemporalcorticalactivationpatterns