Cargando…

High-Density Genetic Map Construction and Identification of QTLs Controlling Oleic and Linoleic Acid in Peanut using SLAF-seq and SSRs

The cultivated peanut, A. hypogaea L., is an important oil and food crop globally.High-density genetic linkage mapping is a valuable and effective method for exploring complex quantitative traits. In this context, a recombinant inbred line (RIL) of 146 lines was developed by crossing Huayu28 and P76...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, X. H., Zhang, S. Z., Miao, H. R., Cui, F. G., Shen, Y., Yang, W. Q., Xu, T. T., Chen, N., Chi, X. Y., Zhang, Z. M., Chen, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883025/
https://www.ncbi.nlm.nih.gov/pubmed/29615772
http://dx.doi.org/10.1038/s41598-018-23873-7
Descripción
Sumario:The cultivated peanut, A. hypogaea L., is an important oil and food crop globally.High-density genetic linkage mapping is a valuable and effective method for exploring complex quantitative traits. In this context, a recombinant inbred line (RIL) of 146 lines was developed by crossing Huayu28 and P76. We developed 433,679 high-quality SLAFs, of which 29,075 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 2,334 markers (68 SSRs and 2,266 SNPs) on 20 linkage groups (LGs) spanning 2586.37 cM was constructed for peanut. The average distance between adjacent markers was 2.25 cM. Based on phenotyping in seven environments, QTLs for oleic acid (C18:1), linoleic acid (C18:2) and the ratio of oleic acid to linoleic acid (O/L) were identified and positioned on linkage groups A03, A04, A09, B09 and B10. Marker2575339 and Marker2379598 in B09 were associated with C18:1, C18:2 and O/L in seven environments, Marker4391589 and Marker4463600 in A09 were associated with C18:1, C18:2 and O/L in six environments. This map exhibits high resolution and accuracy, which will facilitate QTL discovery for essential agronomic traits in peanut.