Cargando…

Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position

The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attractin...

Descripción completa

Detalles Bibliográficos
Autores principales: Sotoma, Shingo, Terada, Daiki, Segawa, Takuya F., Igarashi, Ryuji, Harada, Yoshie, Shirakawa, Masahiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883028/
https://www.ncbi.nlm.nih.gov/pubmed/29615648
http://dx.doi.org/10.1038/s41598-018-23635-5
Descripción
Sumario:The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attracting much attention as ultrastable, sensitive, accurate and versatile physical sensors for quantitative cellular measurements. However, the nanodiamonds currently available for use as sensors have diameters of several tens of nanometres, much larger than the usual size of a protein. Therefore, their actual applications remain limited. Here we show that NVCs in an aggregation of 5-nm-sized detonation-synthesized nanodiamond treated by Krüger’s surface reduction (termed DND-OH) retains the same characteristics as observed in larger diamonds. We show that the negative charge at the NVC are stabilized, have a relatively long T(2) spin relaxation time of up to 4 μs, and are applicable to thermosensing, one-degree orientation determination and nanometric super-resolution imaging. Our results clearly demonstrate the significant potential of DND-OH as a physical sensor. Thus, DND-OH will raise new possibilities for spatiotemporal monitoring of live cells and dynamic biomolecules in individual cells at single-molecule resolution.