Cargando…
Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae
Carbapenem-resistant Enterobacteriaceae (CRE) organisms have emerged to become a major global public health threat among antimicrobial resistant bacterial human pathogens. Little is known about how CREs emerge. One characteristic phenotype of CREs is heteroresistance, which is clinically associated...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883989/ https://www.ncbi.nlm.nih.gov/pubmed/29657865 http://dx.doi.org/10.1155/2018/3028290 |
_version_ | 1783311754224205824 |
---|---|
author | Adams-Sapper, Sheila Gayoso, Adam Riley, Lee. W. |
author_facet | Adams-Sapper, Sheila Gayoso, Adam Riley, Lee. W. |
author_sort | Adams-Sapper, Sheila |
collection | PubMed |
description | Carbapenem-resistant Enterobacteriaceae (CRE) organisms have emerged to become a major global public health threat among antimicrobial resistant bacterial human pathogens. Little is known about how CREs emerge. One characteristic phenotype of CREs is heteroresistance, which is clinically associated with treatment failure in patients given a carbapenem. Through in vitro whole-transcriptome analysis we tracked gene expression over time in two different strains (BR7, BR21) of heteroresistant KPC-producing Klebsiella pneumoniae, first exposed to a bactericidal concentration of imipenem followed by growth in drug-free medium. In both strains, the immediate response was dominated by a shift in expression of genes involved in glycolysis toward those involved in catabolic pathways. This response was followed by global dampening of transcriptional changes involving protein translation, folding and transport, and decreased expression of genes encoding critical junctures of lipopolysaccharide biosynthesis. The emerged high-level carbapenem-resistant BR21 subpopulation had a prophage (IS1) disrupting ompK36 associated with irreversible OmpK36 porin loss. On the other hand, OmpK36 loss in BR7 was reversible. The acquisition of high-level carbapenem resistance by the two heteroresistant strains was associated with distinct and shared stepwise transcriptional programs. Carbapenem heteroresistance may emerge from the most adaptive subpopulation among a population of cells undergoing a complex set of stress-adaptive responses. |
format | Online Article Text |
id | pubmed-5883989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-58839892018-04-15 Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae Adams-Sapper, Sheila Gayoso, Adam Riley, Lee. W. J Pathog Research Article Carbapenem-resistant Enterobacteriaceae (CRE) organisms have emerged to become a major global public health threat among antimicrobial resistant bacterial human pathogens. Little is known about how CREs emerge. One characteristic phenotype of CREs is heteroresistance, which is clinically associated with treatment failure in patients given a carbapenem. Through in vitro whole-transcriptome analysis we tracked gene expression over time in two different strains (BR7, BR21) of heteroresistant KPC-producing Klebsiella pneumoniae, first exposed to a bactericidal concentration of imipenem followed by growth in drug-free medium. In both strains, the immediate response was dominated by a shift in expression of genes involved in glycolysis toward those involved in catabolic pathways. This response was followed by global dampening of transcriptional changes involving protein translation, folding and transport, and decreased expression of genes encoding critical junctures of lipopolysaccharide biosynthesis. The emerged high-level carbapenem-resistant BR21 subpopulation had a prophage (IS1) disrupting ompK36 associated with irreversible OmpK36 porin loss. On the other hand, OmpK36 loss in BR7 was reversible. The acquisition of high-level carbapenem resistance by the two heteroresistant strains was associated with distinct and shared stepwise transcriptional programs. Carbapenem heteroresistance may emerge from the most adaptive subpopulation among a population of cells undergoing a complex set of stress-adaptive responses. Hindawi 2018-03-19 /pmc/articles/PMC5883989/ /pubmed/29657865 http://dx.doi.org/10.1155/2018/3028290 Text en Copyright © 2018 Sheila Adams-Sapper et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Adams-Sapper, Sheila Gayoso, Adam Riley, Lee. W. Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title | Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title_full | Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title_fullStr | Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title_full_unstemmed | Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title_short | Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae |
title_sort | stress-adaptive responses associated with high-level carbapenem resistance in kpc-producing klebsiella pneumoniae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883989/ https://www.ncbi.nlm.nih.gov/pubmed/29657865 http://dx.doi.org/10.1155/2018/3028290 |
work_keys_str_mv | AT adamssappersheila stressadaptiveresponsesassociatedwithhighlevelcarbapenemresistanceinkpcproducingklebsiellapneumoniae AT gayosoadam stressadaptiveresponsesassociatedwithhighlevelcarbapenemresistanceinkpcproducingklebsiellapneumoniae AT rileyleew stressadaptiveresponsesassociatedwithhighlevelcarbapenemresistanceinkpcproducingklebsiellapneumoniae |