Cargando…
SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction
Aberrant expression of microRNAs (miRNAs) can be applied for the diagnosis, prognosis, and treatment of human diseases. Identifying the relationship between miRNA and human disease is important to further investigate the pathogenesis of human diseases. However, experimental identification of the ass...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884242/ https://www.ncbi.nlm.nih.gov/pubmed/29750163 http://dx.doi.org/10.1155/2018/5747489 |
Sumario: | Aberrant expression of microRNAs (miRNAs) can be applied for the diagnosis, prognosis, and treatment of human diseases. Identifying the relationship between miRNA and human disease is important to further investigate the pathogenesis of human diseases. However, experimental identification of the associations between diseases and miRNAs is time-consuming and expensive. Computational methods are efficient approaches to determine the potential associations between diseases and miRNAs. This paper presents a new computational method based on the SimRank and density-based clustering recommender model for miRNA-disease associations prediction (SRMDAP). The AUC of 0.8838 based on leave-one-out cross-validation and case studies suggested the excellent performance of the SRMDAP in predicting miRNA-disease associations. SRMDAP could also predict diseases without any related miRNAs and miRNAs without any related diseases. |
---|