Cargando…
Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation
Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase syn...
Autores principales: | Porta-Garcia, M. A., Valdes-Cristerna, R., Yanez-Suarez, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884284/ https://www.ncbi.nlm.nih.gov/pubmed/29755510 http://dx.doi.org/10.1155/2018/2406909 |
Ejemplares similares
-
Measuring group synchrony: a cluster-phase method for analyzing multivariate movement time-series
por: Richardson, Michael J., et al.
Publicado: (2012) -
The topography of frequency and time representation in primate auditory cortices
por: Baumann, Simon, et al.
Publicado: (2015) -
Optimizing Functional Network Representation of Multivariate Time Series
por: Zanin, Massimiliano, et al.
Publicado: (2012) -
Clustering Multivariate Time Series Using Hidden Markov Models
por: Ghassempour, Shima, et al.
Publicado: (2014) -
Recurrent Neural Networks for Multivariate Time Series with Missing Values
por: Che, Zhengping, et al.
Publicado: (2018)