Cargando…
Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells
Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designe...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884575/ https://www.ncbi.nlm.nih.gov/pubmed/29617431 http://dx.doi.org/10.1371/journal.pone.0195558 |
Sumario: | Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designed for the direct delivery of proteins to mammalian cells including human stem cells, hard-to-modify primary natural killer (NK) cells, and cancer cell models. This peptide is composed of a 6x histidine-rich domain fused to the endosomolytic peptide CM18 and the cell penetrating peptide PTD4. A less than two-minute co-incubation of 6His-CM18-PTD4 peptide with spCas9 and/or asCpf1 CRISPR ribonucleoproteins achieves robust gene editing. The same procedure, co-incubating with the transcription factor HoxB4, achieves transcriptional regulation. The broad applicability and flexibility of this DNA- and chemical-free method across different cell types, particularly hard-to-transfect cells, opens the way for a direct use of proteins for biomedical research and cell therapy manufacturing. |
---|