Cargando…

High-efficiency promoter-driven coordinated regulation of multiple metabolic nodes elevates lipid accumulation in the model microalga Phaeodactylum tricornutum

BACKGROUND: Microalgal metabolic engineering holds great promise for the overproduction of a wide range of commercial bioproducts. It demands simultaneous manipulation of multiple metabolic nodes. However, high-efficiency promoters have been lacking. RESULTS: Here we report a strong constitutive pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Li-Gong, Chen, Jia-Wen, Zheng, Dan-Lin, Balamurugan, Srinivasan, Li, Da-Wei, Yang, Wei-Dong, Liu, Jie-Sheng, Li, Hong-Ye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885374/
https://www.ncbi.nlm.nih.gov/pubmed/29618383
http://dx.doi.org/10.1186/s12934-018-0906-y
Descripción
Sumario:BACKGROUND: Microalgal metabolic engineering holds great promise for the overproduction of a wide range of commercial bioproducts. It demands simultaneous manipulation of multiple metabolic nodes. However, high-efficiency promoters have been lacking. RESULTS: Here we report a strong constitutive promoter Pt211 in expressing multiple target genes in oleaginous microalga Phaeodactylum tricornutum. Pt211 was revealed to contain significant cis-acting elements. GUS reporter and principal genes glycerol-3-phosphate acyltransferase (GPAT) and diacylglycerol acyltransferase 2 (DGAT2) involved in triacylglycerol biosynthesis were tested under driven of Pt211 in P. tricornutum. GUS staining and qPCR analysis showed strong GUS expression. DGAT2 and GPAT linked with a designed 2A sequence exhibited higher transcript abundances than WT, while algal growth and photosynthesis were not impaired. CONCLUSION: The total lipid content increased notably by 2.6-fold compared to WT and reached up to 57.5% (dry cell weight). Overall, our findings report a strong promoter and a strategy for coordinated manipulation of complex metabolic pathways.