Cargando…

Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides

Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol–disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ukuwela, Ashwinie A., Bush, Ashley I., Wedd, Anthony G., Xiao, Zhiguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885593/
https://www.ncbi.nlm.nih.gov/pubmed/29675162
http://dx.doi.org/10.1039/c7sc04416j
_version_ 1783312021253521408
author Ukuwela, Ashwinie A.
Bush, Ashley I.
Wedd, Anthony G.
Xiao, Zhiguang
author_facet Ukuwela, Ashwinie A.
Bush, Ashley I.
Wedd, Anthony G.
Xiao, Zhiguang
author_sort Ukuwela, Ashwinie A.
collection PubMed
description Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol–disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)(2) and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)(2) was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S(–)), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.
format Online
Article
Text
id pubmed-5885593
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-58855932018-04-19 Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides Ukuwela, Ashwinie A. Bush, Ashley I. Wedd, Anthony G. Xiao, Zhiguang Chem Sci Chemistry Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol–disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)(2) and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)(2) was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S(–)), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH. Royal Society of Chemistry 2017-12-06 /pmc/articles/PMC5885593/ /pubmed/29675162 http://dx.doi.org/10.1039/c7sc04416j Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Ukuwela, Ashwinie A.
Bush, Ashley I.
Wedd, Anthony G.
Xiao, Zhiguang
Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title_full Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title_fullStr Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title_full_unstemmed Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title_short Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
title_sort glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885593/
https://www.ncbi.nlm.nih.gov/pubmed/29675162
http://dx.doi.org/10.1039/c7sc04416j
work_keys_str_mv AT ukuwelaashwiniea glutaredoxinsemployparallelmonothioldithiolmechanismstocatalyzethioldisulfideexchangeswithproteindisulfides
AT bushashleyi glutaredoxinsemployparallelmonothioldithiolmechanismstocatalyzethioldisulfideexchangeswithproteindisulfides
AT weddanthonyg glutaredoxinsemployparallelmonothioldithiolmechanismstocatalyzethioldisulfideexchangeswithproteindisulfides
AT xiaozhiguang glutaredoxinsemployparallelmonothioldithiolmechanismstocatalyzethioldisulfideexchangeswithproteindisulfides