Cargando…
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypot...
Autores principales: | Zheng, Suqing, Jiang, Mengying, Zhao, Chengwei, Zhu, Rui, Hu, Zhicheng, Xu, Yong, Lin, Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885771/ https://www.ncbi.nlm.nih.gov/pubmed/29651416 http://dx.doi.org/10.3389/fchem.2018.00082 |
Ejemplares similares
-
BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules
por: Tuwani, Rudraksh, et al.
Publicado: (2019) -
Bitter-RF: A random forest machine model for recognizing bitter peptides
por: Zhang, Yu-Fei, et al.
Publicado: (2023) -
A revision of the “African Non-Spiny” Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae)
por: Knapp, Sandra, et al.
Publicado: (2016) -
BitterSweetForest: A Random Forest Based Binary Classifier to Predict Bitterness and Sweetness of Chemical Compounds
por: Banerjee, Priyanka, et al.
Publicado: (2018) -
Sex Differences in the Bitterness Perception of an Aromatic Myrtle Bitter Liqueur and Bitter Compounds
por: Rosa, Antonella, et al.
Publicado: (2023)