Cargando…
Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia
Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (A...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886046/ https://www.ncbi.nlm.nih.gov/pubmed/29089646 http://dx.doi.org/10.1038/leu.2017.313 |
_version_ | 1783312075593875456 |
---|---|
author | Lhermitte, L Mejstrikova, E van der Sluijs-Gelling, A J Grigore, G E Sedek, L Bras, A E Gaipa, G Sobral da Costa, E Novakova, M Sonneveld, E Buracchi, C de Sá Bacelar, T te Marvelde, J G Trinquand, A Asnafi, V Szczepanski, T Matarraz, S Lopez, A Vidriales, B Bulsa, J Hrusak, O Kalina, T Lecrevisse, Q Martin Ayuso, M Brüggemann, M Verde, J Fernandez, P Burgos, L Paiva, B Pedreira, C E van Dongen, J J M Orfao, A van der Velden, V H J |
author_facet | Lhermitte, L Mejstrikova, E van der Sluijs-Gelling, A J Grigore, G E Sedek, L Bras, A E Gaipa, G Sobral da Costa, E Novakova, M Sonneveld, E Buracchi, C de Sá Bacelar, T te Marvelde, J G Trinquand, A Asnafi, V Szczepanski, T Matarraz, S Lopez, A Vidriales, B Bulsa, J Hrusak, O Kalina, T Lecrevisse, Q Martin Ayuso, M Brüggemann, M Verde, J Fernandez, P Burgos, L Paiva, B Pedreira, C E van Dongen, J J M Orfao, A van der Velden, V H J |
author_sort | Lhermitte, L |
collection | PubMed |
description | Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (AML)) and final diagnosis. Now we built a reference database with 656 typical AL samples (145 T-ALL, 377 BCP-ALL, 134 AML), processed and analyzed via standardized protocols. Using principal component analysis (PCA)-based plots and automated classification algorithms for direct comparison of single-cells from individual patients against the database, another 783 cases were subsequently evaluated. Depending on the database-guided results, patients were categorized as: (i) typical T, B or Myeloid without or; (ii) with a transitional component to another lineage; (iii) atypical; or (iv) mixed-lineage. Using this automated algorithm, in 781/783 cases (99.7%) the right panel was selected, and data comparable to the final WHO-diagnosis was already provided in >93% of cases (85% T-ALL, 97% BCP-ALL, 95% AML and 87% mixed-phenotype AL patients), even without data on the full-characterization panels. Our results show that database-guided analysis facilitates standardized interpretation of ALOT results and allows accurate selection of the relevant classification panels, hence providing a solid basis for designing future WHO AL classifications. |
format | Online Article Text |
id | pubmed-5886046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-58860462018-04-09 Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia Lhermitte, L Mejstrikova, E van der Sluijs-Gelling, A J Grigore, G E Sedek, L Bras, A E Gaipa, G Sobral da Costa, E Novakova, M Sonneveld, E Buracchi, C de Sá Bacelar, T te Marvelde, J G Trinquand, A Asnafi, V Szczepanski, T Matarraz, S Lopez, A Vidriales, B Bulsa, J Hrusak, O Kalina, T Lecrevisse, Q Martin Ayuso, M Brüggemann, M Verde, J Fernandez, P Burgos, L Paiva, B Pedreira, C E van Dongen, J J M Orfao, A van der Velden, V H J Leukemia Original Article Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (AML)) and final diagnosis. Now we built a reference database with 656 typical AL samples (145 T-ALL, 377 BCP-ALL, 134 AML), processed and analyzed via standardized protocols. Using principal component analysis (PCA)-based plots and automated classification algorithms for direct comparison of single-cells from individual patients against the database, another 783 cases were subsequently evaluated. Depending on the database-guided results, patients were categorized as: (i) typical T, B or Myeloid without or; (ii) with a transitional component to another lineage; (iii) atypical; or (iv) mixed-lineage. Using this automated algorithm, in 781/783 cases (99.7%) the right panel was selected, and data comparable to the final WHO-diagnosis was already provided in >93% of cases (85% T-ALL, 97% BCP-ALL, 95% AML and 87% mixed-phenotype AL patients), even without data on the full-characterization panels. Our results show that database-guided analysis facilitates standardized interpretation of ALOT results and allows accurate selection of the relevant classification panels, hence providing a solid basis for designing future WHO AL classifications. Nature Publishing Group 2018-04 2017-12-01 /pmc/articles/PMC5886046/ /pubmed/29089646 http://dx.doi.org/10.1038/leu.2017.313 Text en Copyright © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Original Article Lhermitte, L Mejstrikova, E van der Sluijs-Gelling, A J Grigore, G E Sedek, L Bras, A E Gaipa, G Sobral da Costa, E Novakova, M Sonneveld, E Buracchi, C de Sá Bacelar, T te Marvelde, J G Trinquand, A Asnafi, V Szczepanski, T Matarraz, S Lopez, A Vidriales, B Bulsa, J Hrusak, O Kalina, T Lecrevisse, Q Martin Ayuso, M Brüggemann, M Verde, J Fernandez, P Burgos, L Paiva, B Pedreira, C E van Dongen, J J M Orfao, A van der Velden, V H J Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title | Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title_full | Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title_fullStr | Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title_full_unstemmed | Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title_short | Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
title_sort | automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886046/ https://www.ncbi.nlm.nih.gov/pubmed/29089646 http://dx.doi.org/10.1038/leu.2017.313 |
work_keys_str_mv | AT lhermittel automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT mejstrikovae automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT vandersluijsgellingaj automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT grigorege automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT sedekl automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT brasae automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT gaipag automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT sobraldacostae automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT novakovam automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT sonnevelde automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT buracchic automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT desabacelart automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT temarveldejg automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT trinquanda automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT asnafiv automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT szczepanskit automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT matarrazs automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT lopeza automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT vidrialesb automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT bulsaj automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT hrusako automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT kalinat automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT lecrevisseq automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT martinayusom automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT bruggemannm automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT verdej automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT fernandezp automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT burgosl automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT paivab automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT pedreirace automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT vandongenjjm automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT orfaoa automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia AT vanderveldenvhj automateddatabaseguidedexpertsupervisedorientationforimmunophenotypicdiagnosisandclassificationofacuteleukemia |