Cargando…
Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
PURPOSE: To validate the prediction accuracy of variational Bayes linear regression (VBLR) with two datasets external to the training dataset. METHOD: The training dataset consisted of 7268 eyes of 4278 subjects from the University of Tokyo Hospital. The Japanese Archive of Multicentral Databases in...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886131/ https://www.ncbi.nlm.nih.gov/pubmed/29677350 http://dx.doi.org/10.1167/iovs.17-22907 |
_version_ | 1783312090094632960 |
---|---|
author | Murata, Hiroshi Zangwill, Linda M. Fujino, Yuri Matsuura, Masato Miki, Atsuya Hirasawa, Kazunori Tanito, Masaki Mizoue, Shiro Mori, Kazuhiko Suzuki, Katsuyoshi Yamashita, Takehiro Kashiwagi, Kenji Shoji, Nobuyuki Asaoka, Ryo |
author_facet | Murata, Hiroshi Zangwill, Linda M. Fujino, Yuri Matsuura, Masato Miki, Atsuya Hirasawa, Kazunori Tanito, Masaki Mizoue, Shiro Mori, Kazuhiko Suzuki, Katsuyoshi Yamashita, Takehiro Kashiwagi, Kenji Shoji, Nobuyuki Asaoka, Ryo |
author_sort | Murata, Hiroshi |
collection | PubMed |
description | PURPOSE: To validate the prediction accuracy of variational Bayes linear regression (VBLR) with two datasets external to the training dataset. METHOD: The training dataset consisted of 7268 eyes of 4278 subjects from the University of Tokyo Hospital. The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG) dataset consisted of 271 eyes of 177 patients, and the Diagnostic Innovations in Glaucoma Study (DIGS) dataset includes 248 eyes of 173 patients, which were used for validation. Prediction accuracy was compared between the VBLR and ordinary least squared linear regression (OLSLR). First, OLSLR and VBLR were carried out using total deviation (TD) values at each of the 52 test points from the second to fourth visual fields (VFs) (VF2–4) to 2nd to 10th VF (VF2–10) of each patient in JAMDIG and DIGS datasets, and the TD values of the 11th VF test were predicted every time. The predictive accuracy of each method was compared through the root mean squared error (RMSE) statistic. RESULTS: OLSLR RMSEs with the JAMDIG and DIGS datasets were between 31 and 4.3 dB, and between 19.5 and 3.9 dB. On the other hand, VBLR RMSEs with JAMDIG and DIGS datasets were between 5.0 and 3.7, and between 4.6 and 3.6 dB. There was statistically significant difference between VBLR and OLSLR for both datasets at every series (VF2–4 to VF2–10) (P < 0.01 for all tests). However, there was no statistically significant difference in VBLR RMSEs between JAMDIG and DIGS datasets at any series of VFs (VF2–2 to VF2–10) (P > 0.05). CONCLUSIONS: VBLR outperformed OLSLR to predict future VF progression, and the VBLR has a potential to be a helpful tool at clinical settings. |
format | Online Article Text |
id | pubmed-5886131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-58861312018-04-06 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets Murata, Hiroshi Zangwill, Linda M. Fujino, Yuri Matsuura, Masato Miki, Atsuya Hirasawa, Kazunori Tanito, Masaki Mizoue, Shiro Mori, Kazuhiko Suzuki, Katsuyoshi Yamashita, Takehiro Kashiwagi, Kenji Shoji, Nobuyuki Asaoka, Ryo Invest Ophthalmol Vis Sci Glaucoma PURPOSE: To validate the prediction accuracy of variational Bayes linear regression (VBLR) with two datasets external to the training dataset. METHOD: The training dataset consisted of 7268 eyes of 4278 subjects from the University of Tokyo Hospital. The Japanese Archive of Multicentral Databases in Glaucoma (JAMDIG) dataset consisted of 271 eyes of 177 patients, and the Diagnostic Innovations in Glaucoma Study (DIGS) dataset includes 248 eyes of 173 patients, which were used for validation. Prediction accuracy was compared between the VBLR and ordinary least squared linear regression (OLSLR). First, OLSLR and VBLR were carried out using total deviation (TD) values at each of the 52 test points from the second to fourth visual fields (VFs) (VF2–4) to 2nd to 10th VF (VF2–10) of each patient in JAMDIG and DIGS datasets, and the TD values of the 11th VF test were predicted every time. The predictive accuracy of each method was compared through the root mean squared error (RMSE) statistic. RESULTS: OLSLR RMSEs with the JAMDIG and DIGS datasets were between 31 and 4.3 dB, and between 19.5 and 3.9 dB. On the other hand, VBLR RMSEs with JAMDIG and DIGS datasets were between 5.0 and 3.7, and between 4.6 and 3.6 dB. There was statistically significant difference between VBLR and OLSLR for both datasets at every series (VF2–4 to VF2–10) (P < 0.01 for all tests). However, there was no statistically significant difference in VBLR RMSEs between JAMDIG and DIGS datasets at any series of VFs (VF2–2 to VF2–10) (P > 0.05). CONCLUSIONS: VBLR outperformed OLSLR to predict future VF progression, and the VBLR has a potential to be a helpful tool at clinical settings. The Association for Research in Vision and Ophthalmology 2018-04 /pmc/articles/PMC5886131/ /pubmed/29677350 http://dx.doi.org/10.1167/iovs.17-22907 Text en Copyright 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Glaucoma Murata, Hiroshi Zangwill, Linda M. Fujino, Yuri Matsuura, Masato Miki, Atsuya Hirasawa, Kazunori Tanito, Masaki Mizoue, Shiro Mori, Kazuhiko Suzuki, Katsuyoshi Yamashita, Takehiro Kashiwagi, Kenji Shoji, Nobuyuki Asaoka, Ryo Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title | Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title_full | Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title_fullStr | Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title_full_unstemmed | Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title_short | Validating Variational Bayes Linear Regression Method With Multi-Central Datasets |
title_sort | validating variational bayes linear regression method with multi-central datasets |
topic | Glaucoma |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886131/ https://www.ncbi.nlm.nih.gov/pubmed/29677350 http://dx.doi.org/10.1167/iovs.17-22907 |
work_keys_str_mv | AT muratahiroshi validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT zangwilllindam validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT fujinoyuri validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT matsuuramasato validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT mikiatsuya validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT hirasawakazunori validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT tanitomasaki validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT mizoueshiro validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT morikazuhiko validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT suzukikatsuyoshi validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT yamashitatakehiro validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT kashiwagikenji validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT shojinobuyuki validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets AT asaokaryo validatingvariationalbayeslinearregressionmethodwithmulticentraldatasets |