Cargando…

β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes

BACKGROUND: Oxidative stress occurs in white adipose tissue and dysregulates the expression of adipokines secreted from adipocytes. Since adipokines influence inflammation, supplementation with antioxidants might be beneficial for preventing oxidative stress-mediated inflammation in adipocytes and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Soon Ok, Kim, Min-Hyun, Kim, Hyeyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Cancer Prevention 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886493/
https://www.ncbi.nlm.nih.gov/pubmed/29629347
http://dx.doi.org/10.15430/JCP.2018.23.1.37
_version_ 1783312135195983872
author Cho, Soon Ok
Kim, Min-Hyun
Kim, Hyeyoung
author_facet Cho, Soon Ok
Kim, Min-Hyun
Kim, Hyeyoung
author_sort Cho, Soon Ok
collection PubMed
description BACKGROUND: Oxidative stress occurs in white adipose tissue and dysregulates the expression of adipokines secreted from adipocytes. Since adipokines influence inflammation, supplementation with antioxidants might be beneficial for preventing oxidative stress-mediated inflammation in adipocytes and inflammation-associated complications. β-Carotene is the most prominent antioxidant carotenoid and scavenges reactive oxygen species in various tissues. The purpose of this study was to determine whether β-carotene regulates the expression of adipokines, such as adiponectin, monocyte chemoattractant protein-1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES) in 3T3-L1 adipocytes treated with glucose/glucose oxidase (G/GO). METHODS: 3T3-L1 adipocytes were cultured with or without β-carotene and treated with G/GO, which produces H(2)O(2). mRNA and protein levels in the medium were determined by a real-time PCR and an ELISA. DNA binding activities of transcription factors were assessed using an electrophoretic mobility shift assay. RESULTS: G/GO treatment increased DNA binding affinities of redox-sensitive transcription factors, such as NF-κB, activator protein-1 (AP-1), and STAT3. G/GO treatment reduced the expression of adiponectin and increased the expression of MCP-1 and RANTES. G/GO-induced activations of NF-κB, AP-1, and STAT3 were inhibited by β-carotene. G/GO-induced dysregulation of adiponectin, MCP-1, and RANTES were significantly recovered by treatment with β-carotene. CONCLUSIONS: β-Carotene inhibits oxidative stress-induced inflammation by suppressing pro-inflammatory adipokines MCP-1 and RANTES, and by enhancing adiponectin in adipocytes. β-Carotene may be beneficial for preventing oxidative stress-mediated inflammation, which is related to adipokine dysfunction.
format Online
Article
Text
id pubmed-5886493
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Korean Society of Cancer Prevention
record_format MEDLINE/PubMed
spelling pubmed-58864932018-04-06 β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes Cho, Soon Ok Kim, Min-Hyun Kim, Hyeyoung J Cancer Prev Original Article BACKGROUND: Oxidative stress occurs in white adipose tissue and dysregulates the expression of adipokines secreted from adipocytes. Since adipokines influence inflammation, supplementation with antioxidants might be beneficial for preventing oxidative stress-mediated inflammation in adipocytes and inflammation-associated complications. β-Carotene is the most prominent antioxidant carotenoid and scavenges reactive oxygen species in various tissues. The purpose of this study was to determine whether β-carotene regulates the expression of adipokines, such as adiponectin, monocyte chemoattractant protein-1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES) in 3T3-L1 adipocytes treated with glucose/glucose oxidase (G/GO). METHODS: 3T3-L1 adipocytes were cultured with or without β-carotene and treated with G/GO, which produces H(2)O(2). mRNA and protein levels in the medium were determined by a real-time PCR and an ELISA. DNA binding activities of transcription factors were assessed using an electrophoretic mobility shift assay. RESULTS: G/GO treatment increased DNA binding affinities of redox-sensitive transcription factors, such as NF-κB, activator protein-1 (AP-1), and STAT3. G/GO treatment reduced the expression of adiponectin and increased the expression of MCP-1 and RANTES. G/GO-induced activations of NF-κB, AP-1, and STAT3 were inhibited by β-carotene. G/GO-induced dysregulation of adiponectin, MCP-1, and RANTES were significantly recovered by treatment with β-carotene. CONCLUSIONS: β-Carotene inhibits oxidative stress-induced inflammation by suppressing pro-inflammatory adipokines MCP-1 and RANTES, and by enhancing adiponectin in adipocytes. β-Carotene may be beneficial for preventing oxidative stress-mediated inflammation, which is related to adipokine dysfunction. Korean Society of Cancer Prevention 2018-03 2018-03-30 /pmc/articles/PMC5886493/ /pubmed/29629347 http://dx.doi.org/10.15430/JCP.2018.23.1.37 Text en Copyright © 2018 Korean Society of Cancer Prevention This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Cho, Soon Ok
Kim, Min-Hyun
Kim, Hyeyoung
β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title_full β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title_fullStr β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title_full_unstemmed β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title_short β-Carotene Inhibits Activation of NF-κB, Activator Protein-1, and STAT3 and Regulates Abnormal Expression of Some Adipokines in 3T3-L1 Adipocytes
title_sort β-carotene inhibits activation of nf-κb, activator protein-1, and stat3 and regulates abnormal expression of some adipokines in 3t3-l1 adipocytes
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886493/
https://www.ncbi.nlm.nih.gov/pubmed/29629347
http://dx.doi.org/10.15430/JCP.2018.23.1.37
work_keys_str_mv AT chosoonok bcaroteneinhibitsactivationofnfkbactivatorprotein1andstat3andregulatesabnormalexpressionofsomeadipokinesin3t3l1adipocytes
AT kimminhyun bcaroteneinhibitsactivationofnfkbactivatorprotein1andstat3andregulatesabnormalexpressionofsomeadipokinesin3t3l1adipocytes
AT kimhyeyoung bcaroteneinhibitsactivationofnfkbactivatorprotein1andstat3andregulatesabnormalexpressionofsomeadipokinesin3t3l1adipocytes