Cargando…

Stochastic satisficing account of confidence in uncertain value-based decisions

Every day we make choices under uncertainty; choosing what route to work or which queue in a supermarket to take, for example. It is unclear how outcome variance, e.g. uncertainty about waiting time in a queue, affects decisions and confidence when outcome is stochastic and continuous. How does one...

Descripción completa

Detalles Bibliográficos
Autores principales: Hertz, Uri, Bahrami, Bahador, Keramati, Mehdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886535/
https://www.ncbi.nlm.nih.gov/pubmed/29621325
http://dx.doi.org/10.1371/journal.pone.0195399
Descripción
Sumario:Every day we make choices under uncertainty; choosing what route to work or which queue in a supermarket to take, for example. It is unclear how outcome variance, e.g. uncertainty about waiting time in a queue, affects decisions and confidence when outcome is stochastic and continuous. How does one evaluate and choose between an option with unreliable but high expected reward, and an option with more certain but lower expected reward? Here we used an experimental design where two choices’ payoffs took continuous values, to examine the effect of outcome variance on decision and confidence. We found that our participants’ probability of choosing the good (high expected reward) option decreased when the good or the bad options’ payoffs were more variable. Their confidence ratings were affected by outcome variability, but only when choosing the good option. Unlike perceptual detection tasks, confidence ratings correlated only weakly with decisions’ time, but correlated with the consistency of trial-by-trial choices. Inspired by the satisficing heuristic, we propose a “stochastic satisficing” (SSAT) model for evaluating options with continuous uncertain outcomes. In this model, options are evaluated by their probability of exceeding an acceptability threshold, and confidence reports scale with the chosen option’s thus-defined satisficing probability. Participants’ decisions were best explained by an expected reward model, while the SSAT model provided the best prediction of decision confidence. We further tested and verified the predictions of this model in a second experiment. Our model and experimental results generalize the models of metacognition from perceptual detection tasks to continuous-value based decisions. Finally, we discuss how the stochastic satisficing account of decision confidence serves psychological and social purposes associated with the evaluation, communication and justification of decision-making.