Cargando…
Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System
There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886753/ https://www.ncbi.nlm.nih.gov/pubmed/29651365 http://dx.doi.org/10.1109/JTEHM.2018.2797985 |
_version_ | 1783312180495515648 |
---|---|
collection | PubMed |
description | There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen’s Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals. |
format | Online Article Text |
id | pubmed-5886753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | IEEE |
record_format | MEDLINE/PubMed |
spelling | pubmed-58867532018-04-12 Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System IEEE J Transl Eng Health Med Article There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen’s Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals. IEEE 2018-04-02 /pmc/articles/PMC5886753/ /pubmed/29651365 http://dx.doi.org/10.1109/JTEHM.2018.2797985 Text en 2168-2372 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. |
spellingShingle | Article Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title | Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title_full | Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title_fullStr | Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title_full_unstemmed | Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title_short | Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System |
title_sort | mastication evaluation with unsupervised learning: using an inertial sensor-based system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886753/ https://www.ncbi.nlm.nih.gov/pubmed/29651365 http://dx.doi.org/10.1109/JTEHM.2018.2797985 |
work_keys_str_mv | AT masticationevaluationwithunsupervisedlearningusinganinertialsensorbasedsystem AT masticationevaluationwithunsupervisedlearningusinganinertialsensorbasedsystem AT masticationevaluationwithunsupervisedlearningusinganinertialsensorbasedsystem AT masticationevaluationwithunsupervisedlearningusinganinertialsensorbasedsystem AT masticationevaluationwithunsupervisedlearningusinganinertialsensorbasedsystem |