Cargando…
Machine learning for the structure–energy–property landscapes of molecular crystals
Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable...
Autores principales: | Musil, Félix, De, Sandip, Yang, Jack, Campbell, Joshua E., Day, Graeme M., Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887104/ https://www.ncbi.nlm.nih.gov/pubmed/29675175 http://dx.doi.org/10.1039/c7sc04665k |
Ejemplares similares
-
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Modelling temperature-dependent properties of polymorphic organic molecular crystals
por: Nyman, Jonas, et al.
Publicado: (2016) -
Global analysis of the energy landscapes of molecular crystal structures by applying the threshold algorithm
por: Yang, Shiyue, et al.
Publicado: (2022) -
A data-driven interpretation of the stability of organic molecular crystals
por: Cersonsky, Rose K., et al.
Publicado: (2023) -
Mapping and classifying molecules from a high-throughput structural database
por: De, Sandip, et al.
Publicado: (2017)