Cargando…

In situ synthesis of sub-nanometer metal particles on hierarchically porous metal–organic frameworks via interfacial control for highly efficient catalysis

In this work, we developed a strategy to in situ synthesize sub-nanometer metal particle/hierarchically mesoporous metal–organic framework (MOF) composites in emulsion. In this route, water droplets in the emulsion acted as both a solvent of the metal precursors and a template for the hierarchical m...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Pei, Chen, Chunjun, Kang, Xinchen, Zhang, Lujun, Wu, Congyi, Zhang, Jianling, Han, Buxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887229/
https://www.ncbi.nlm.nih.gov/pubmed/29675181
http://dx.doi.org/10.1039/c7sc04269h
Descripción
Sumario:In this work, we developed a strategy to in situ synthesize sub-nanometer metal particle/hierarchically mesoporous metal–organic framework (MOF) composites in emulsion. In this route, water droplets in the emulsion acted as both a solvent of the metal precursors and a template for the hierarchical mesopores of MOFs, and the surfactant was an emulsifier and a reductant for generating metal particles. Au/Zn-MOFs (MOFs formed by Zn(2+) and methylimidazole), Ru/Zn-MOFs, Pd/Zn-MOFs, and Au/Cu-MOFs (MOFs formed by Cu(2+) and methylimidazole) were prepared using this method, in which ultrafine metal particles (e.g. 0.8 nm) were immobilized uniformly on hierarchically mesoporous MOFs. Au/Zn-MOFs and Au/Cu-MOFs showed outstanding catalytic performances for the selective aerobic oxidation of cyclohexene to 2-cyclohexen-1-one in the absence of an initiator, and Ru/Zn-MOFs were very active and selective for the hydrogenation of diphenyl sulfoxide to diphenyl sulfide. In addition, the catalysts were also very stable in the reactions.