Cargando…
Efficient prediction of reaction paths through molecular graph and reaction network analysis
Despite remarkable advances in computational chemistry, prediction of reaction mechanisms is still challenging, because investigating all possible reaction pathways is computationally prohibitive due to the high complexity of chemical space. A feasible strategy for efficient prediction is to utilize...
Autores principales: | Kim, Yeonjoon, Kim, Jin Woo, Kim, Zeehyo, Kim, Woo Youn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887236/ https://www.ncbi.nlm.nih.gov/pubmed/29675146 http://dx.doi.org/10.1039/c7sc03628k |
Ejemplares similares
-
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
por: Ryu, Seongok, et al.
Publicado: (2019) -
Exploring Optimal
Reaction Conditions Guided by Graph
Neural Networks and Bayesian Optimization
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Scaffold-based molecular design with a graph generative model
por: Lim, Jaechang, et al.
Publicado: (2019) -
Mining hydroformylation in complex reaction network via graph theory
por: Takahashi, Keisuke, et al.
Publicado: (2021) -
Predicting potentially hazardous chemical reactions using an explainable neural network
por: Kim, Juhwan, et al.
Publicado: (2021)