Cargando…

Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption

We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a...

Descripción completa

Detalles Bibliográficos
Autores principales: Clarke, Ryan M., Jeen, Tiffany, Rigo, Serena, Thompson, John R., Kaake, Loren G., Thomas, Fabrice, Storr, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887452/
https://www.ncbi.nlm.nih.gov/pubmed/29675206
http://dx.doi.org/10.1039/c7sc04537a
_version_ 1783312306191466496
author Clarke, Ryan M.
Jeen, Tiffany
Rigo, Serena
Thompson, John R.
Kaake, Loren G.
Thomas, Fabrice
Storr, Tim
author_facet Clarke, Ryan M.
Jeen, Tiffany
Rigo, Serena
Thompson, John R.
Kaake, Loren G.
Thomas, Fabrice
Storr, Tim
author_sort Clarke, Ryan M.
collection PubMed
description We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we demonstrate that bimetallic Ni salen complexes form bis-ligand radicals upon two-electron oxidation, whose NIR absorption energies depend on the geometry imposed in the bis-ligand radical complex. Relative to the oxidized monomer [1˙](+) (E = 4500 cm(–1), ε = 27 700 M(–1) cm(–1)), oxidation of the cofacially constrained analogue 2 to [2˙˙](2+) results in a blue-shifted NIR band (E = 4830 cm(–1), ε = 42 900 M(–1) cm(–1)), while oxidation of 5 to [5˙˙](2+), with parallel arrangement of chromophores, results in a red-shifted NIR band (E = 4150 cm(–1), ε = 46 600 M(–1) cm(–1)); the NIR bands exhibit double the intensity in comparison to the monomer. Oxidation of the intermediate orientations results in band splitting for [3˙˙](2+) (E = 4890 and 4200 cm(–1); ε = 26 500 and 21 100 M(–1) cm(–1)), and a red-shift for [4˙˙](2+) using ortho- and meta-phenylene linkers, respectively. This study demonstrates for the first time, the applicability of exciton coupling to ligand radical systems absorbing in the NIR region and shows that by simple geometry changes, it is possible to tune the energy of intense low energy absorption by nearly 400 nm.
format Online
Article
Text
id pubmed-5887452
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-58874522018-04-19 Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption Clarke, Ryan M. Jeen, Tiffany Rigo, Serena Thompson, John R. Kaake, Loren G. Thomas, Fabrice Storr, Tim Chem Sci Chemistry We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we demonstrate that bimetallic Ni salen complexes form bis-ligand radicals upon two-electron oxidation, whose NIR absorption energies depend on the geometry imposed in the bis-ligand radical complex. Relative to the oxidized monomer [1˙](+) (E = 4500 cm(–1), ε = 27 700 M(–1) cm(–1)), oxidation of the cofacially constrained analogue 2 to [2˙˙](2+) results in a blue-shifted NIR band (E = 4830 cm(–1), ε = 42 900 M(–1) cm(–1)), while oxidation of 5 to [5˙˙](2+), with parallel arrangement of chromophores, results in a red-shifted NIR band (E = 4150 cm(–1), ε = 46 600 M(–1) cm(–1)); the NIR bands exhibit double the intensity in comparison to the monomer. Oxidation of the intermediate orientations results in band splitting for [3˙˙](2+) (E = 4890 and 4200 cm(–1); ε = 26 500 and 21 100 M(–1) cm(–1)), and a red-shift for [4˙˙](2+) using ortho- and meta-phenylene linkers, respectively. This study demonstrates for the first time, the applicability of exciton coupling to ligand radical systems absorbing in the NIR region and shows that by simple geometry changes, it is possible to tune the energy of intense low energy absorption by nearly 400 nm. Royal Society of Chemistry 2017-12-19 /pmc/articles/PMC5887452/ /pubmed/29675206 http://dx.doi.org/10.1039/c7sc04537a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Clarke, Ryan M.
Jeen, Tiffany
Rigo, Serena
Thompson, John R.
Kaake, Loren G.
Thomas, Fabrice
Storr, Tim
Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title_full Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title_fullStr Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title_full_unstemmed Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title_short Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption
title_sort exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune nir absorption
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887452/
https://www.ncbi.nlm.nih.gov/pubmed/29675206
http://dx.doi.org/10.1039/c7sc04537a
work_keys_str_mv AT clarkeryanm exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT jeentiffany exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT rigoserena exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT thompsonjohnr exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT kaakeloreng exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT thomasfabrice exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption
AT storrtim exploitingexcitoncouplingofligandradicalintervalencechargetransfertransitionstotunenirabsorption