Cargando…

20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS

BACKGROUND: Reciprocal genomic disorders (RGDs) represent a unique class of recurrent genomic variation that offer insight into highly dosage sensitive regions of the morbid human genome. However, the genomic architecture mediating RGDs, namely non-allelic homologous recombination (NAHR) of flanking...

Descripción completa

Detalles Bibliográficos
Autor principal: Talkowski, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887469/
http://dx.doi.org/10.1093/schbul/sby014.080
_version_ 1783312310178152448
author Talkowski, Michael
author_facet Talkowski, Michael
author_sort Talkowski, Michael
collection PubMed
description BACKGROUND: Reciprocal genomic disorders (RGDs) represent a unique class of recurrent genomic variation that offer insight into highly dosage sensitive regions of the morbid human genome. However, the genomic architecture mediating RGDs, namely non-allelic homologous recombination (NAHR) of flanking segmental duplications, has rendered these genomic segments recalcitrant to conventional model studies. We recently developed a novel CRISPR method that leverages the homology of segmental duplications and efficiently generates large microdeletions and microduplications that mimic NAHR in humans, including ablation or duplication of one copy equivalent of the segmental duplications. Here, we explore the functional consequences of 16p11.2 RGD in iPS derived neuronal models and across mouse tissues. METHODS: We generated CRISPR-engineered 16p11.2 RGD models against an isogenic iPSC background and performed transcriptome profiling in iPSC-derived neural stem cells (NSCs) and induced neurons (iN) (n = 10 isogenic deletions, 10 duplications, 6 controls). We then integrated these data with RNAseq from 306 libraries from multiple tissues in 70 mouse models of reciprocal deletion and duplication of the syntenic 7qf3 region (cortex, striatum, cerebellum, liver, white fat, brown fat in 16 mice; and replication from cortex, striatum, cerebellum in 54 mice). RESULTS: In ongoing analyses, weighted-gene correlation network analysis (WGCNA) identified co-expression modules that were significantly enriched for 16p11.2 genes, evolutionarily constrained genes, genes robustly associated with autism spectrum disorder (ASD; TADA q < 0.1) and developmental disorders (DDD). Pathway analyses within modules discovered enrichment of genes critical to synaptic formation and neural connectivity as well as the protocadherin gene family. Network analyses specific to brain tissues within modules further identified a convergence on highly connected, or ‘hub’ genes, on Wnt signaling, including Ctnnb1 and Ctnnd1. The module was also again enriched for ASD loci (TADA, FDR < 0.1), constrained genes (ExAC, pLI ≥ 0.9) and brain specific genes from the Human Protein Atlas. DISCUSSION: These studies suggest the functional consequences of 16p11.2 RGD across models converge on transcriptional signatures associated with critical neurodevelopmental pathways and individual genes implicated in a spectrum of developmental and neuropsychiatric disorders.
format Online
Article
Text
id pubmed-5887469
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-58874692018-04-11 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS Talkowski, Michael Schizophr Bull Abstracts BACKGROUND: Reciprocal genomic disorders (RGDs) represent a unique class of recurrent genomic variation that offer insight into highly dosage sensitive regions of the morbid human genome. However, the genomic architecture mediating RGDs, namely non-allelic homologous recombination (NAHR) of flanking segmental duplications, has rendered these genomic segments recalcitrant to conventional model studies. We recently developed a novel CRISPR method that leverages the homology of segmental duplications and efficiently generates large microdeletions and microduplications that mimic NAHR in humans, including ablation or duplication of one copy equivalent of the segmental duplications. Here, we explore the functional consequences of 16p11.2 RGD in iPS derived neuronal models and across mouse tissues. METHODS: We generated CRISPR-engineered 16p11.2 RGD models against an isogenic iPSC background and performed transcriptome profiling in iPSC-derived neural stem cells (NSCs) and induced neurons (iN) (n = 10 isogenic deletions, 10 duplications, 6 controls). We then integrated these data with RNAseq from 306 libraries from multiple tissues in 70 mouse models of reciprocal deletion and duplication of the syntenic 7qf3 region (cortex, striatum, cerebellum, liver, white fat, brown fat in 16 mice; and replication from cortex, striatum, cerebellum in 54 mice). RESULTS: In ongoing analyses, weighted-gene correlation network analysis (WGCNA) identified co-expression modules that were significantly enriched for 16p11.2 genes, evolutionarily constrained genes, genes robustly associated with autism spectrum disorder (ASD; TADA q < 0.1) and developmental disorders (DDD). Pathway analyses within modules discovered enrichment of genes critical to synaptic formation and neural connectivity as well as the protocadherin gene family. Network analyses specific to brain tissues within modules further identified a convergence on highly connected, or ‘hub’ genes, on Wnt signaling, including Ctnnb1 and Ctnnd1. The module was also again enriched for ASD loci (TADA, FDR < 0.1), constrained genes (ExAC, pLI ≥ 0.9) and brain specific genes from the Human Protein Atlas. DISCUSSION: These studies suggest the functional consequences of 16p11.2 RGD across models converge on transcriptional signatures associated with critical neurodevelopmental pathways and individual genes implicated in a spectrum of developmental and neuropsychiatric disorders. Oxford University Press 2018-04 2018-04-01 /pmc/articles/PMC5887469/ http://dx.doi.org/10.1093/schbul/sby014.080 Text en © Maryland Psychiatric Research Center 2018. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Abstracts
Talkowski, Michael
20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title_full 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title_fullStr 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title_full_unstemmed 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title_short 20.1 DISSECTING THE FUNCTIONAL CONSEQUENCES OF RECIPROCAL GENOMIC DISORDERS
title_sort 20.1 dissecting the functional consequences of reciprocal genomic disorders
topic Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887469/
http://dx.doi.org/10.1093/schbul/sby014.080
work_keys_str_mv AT talkowskimichael 201dissectingthefunctionalconsequencesofreciprocalgenomicdisorders