Cargando…

Mercaptoethanol Protects the Aorta from Dissection by Inhibiting Oxidative Stress, Inflammation, and Extracellular Matrix Degeneration in a Mouse Model

BACKGROUND: The aims of this study were to investigate the effects of mercaptoethanol treatment on the expression of mediators of oxidative stress, inflammation, and extracellular matrix (ECM) degeneration in a mouse aortic dissection (AD) model. MATERIAL/METHODS: Twenty-four 8-month-old C57BL/6J mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lei, Wang, Changtian, Xi, Zhilong, Li, Demin, Xu, Zhiyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887686/
https://www.ncbi.nlm.nih.gov/pubmed/29589594
http://dx.doi.org/10.12659/MSM.905151
Descripción
Sumario:BACKGROUND: The aims of this study were to investigate the effects of mercaptoethanol treatment on the expression of mediators of oxidative stress, inflammation, and extracellular matrix (ECM) degeneration in a mouse aortic dissection (AD) model. MATERIAL/METHODS: Twenty-four 8-month-old C57BL/6J mice were divided into three groups and studied for two weeks: 1) the aortic dissection (AD) Model group (N=8) underwent intraperitoneal injection of angiotensin II (Ang II) (5 ml/kg) three times every 24 h; 2) the mercaptoethanol Treated group (N=8) were given oral mercaptoethanol (2.5 mM); the Normal group (N=8) underwent intraperitoneal injection of noradrenaline (5 mg/kg) three times every 24 h. Sections of mouse aorta were prepared for histology with hematoxylin and eosin (H&E) staining; immunohistochemistry was performed to detect levels of: nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), nuclear factor κB (NF-κB), p65, superoxide dismutase-1 (SOD1), glutamate cysteine ligase catalytic subunit (GCLC), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and matrix metalloproteinase-9 (MMP9). Quantitative reverse transcription-polymerase chain reaction (RT-PCR) evaluated mRNA expression of SOD1, GCLC, TNF-α, IL-1β, and MMP9. RESULTS: Mercaptoethanol treatment inhibited Ang II-induced aortic dissection in AD mice, as shown histologically. Mercaptoethanol treatment reduced the expression levels of NFE2L2, NF-κB, p65, TNF-α, IL-1β and increased the expression levels of SOD1, MMP9, and GCLC. CONCLUSIONS: In an AD mouse model, mercaptoethanol treatment inhibited thoracic and abdominal aortic dissection and reduced aortic tissue expression of mediators of oxidative stress and inflammation and increased the activation of ECM signaling pathways.