Cargando…
The effects of memory training on behavioral and microstructural plasticity in young and older adults
Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887978/ https://www.ncbi.nlm.nih.gov/pubmed/28782901 http://dx.doi.org/10.1002/hbm.23756 |
_version_ | 1783312427641733120 |
---|---|
author | de Lange, Ann‐Marie Glasø Bråthen, Anne Cecilie Sjøli Rohani, Darius A. Grydeland, Håkon Fjell, Anders M. Walhovd, Kristine B. |
author_facet | de Lange, Ann‐Marie Glasø Bråthen, Anne Cecilie Sjøli Rohani, Darius A. Grydeland, Håkon Fjell, Anders M. Walhovd, Kristine B. |
author_sort | de Lange, Ann‐Marie Glasø |
collection | PubMed |
description | Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. |
format | Online Article Text |
id | pubmed-5887978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58879782018-04-12 The effects of memory training on behavioral and microstructural plasticity in young and older adults de Lange, Ann‐Marie Glasø Bråthen, Anne Cecilie Sjøli Rohani, Darius A. Grydeland, Håkon Fjell, Anders M. Walhovd, Kristine B. Hum Brain Mapp Research Articles Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. John Wiley and Sons Inc. 2017-08-07 /pmc/articles/PMC5887978/ /pubmed/28782901 http://dx.doi.org/10.1002/hbm.23756 Text en © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles de Lange, Ann‐Marie Glasø Bråthen, Anne Cecilie Sjøli Rohani, Darius A. Grydeland, Håkon Fjell, Anders M. Walhovd, Kristine B. The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title | The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title_full | The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title_fullStr | The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title_full_unstemmed | The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title_short | The effects of memory training on behavioral and microstructural plasticity in young and older adults |
title_sort | effects of memory training on behavioral and microstructural plasticity in young and older adults |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887978/ https://www.ncbi.nlm.nih.gov/pubmed/28782901 http://dx.doi.org/10.1002/hbm.23756 |
work_keys_str_mv | AT delangeannmarieglasø theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT brathenannececiliesjøli theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT rohanidariusa theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT grydelandhakon theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT fjellandersm theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT walhovdkristineb theeffectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT delangeannmarieglasø effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT brathenannececiliesjøli effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT rohanidariusa effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT grydelandhakon effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT fjellandersm effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults AT walhovdkristineb effectsofmemorytrainingonbehavioralandmicrostructuralplasticityinyoungandolderadults |