Cargando…
Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications
Studies in plant phenology have provided some of the best evidence for large-scale responses to recent climate change. Over the last decade, more than thirty studies have used herbarium specimens to analyze changes in flowering phenology over time, although studies from tropical environments are thu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888139/ https://www.ncbi.nlm.nih.gov/pubmed/29632745 http://dx.doi.org/10.7717/peerj.4576 |
_version_ | 1783312455668072448 |
---|---|
author | Jones, Casey A. Daehler, Curtis C. |
author_facet | Jones, Casey A. Daehler, Curtis C. |
author_sort | Jones, Casey A. |
collection | PubMed |
description | Studies in plant phenology have provided some of the best evidence for large-scale responses to recent climate change. Over the last decade, more than thirty studies have used herbarium specimens to analyze changes in flowering phenology over time, although studies from tropical environments are thus far generally lacking. In this review, we summarize the approaches and applications used to date. Reproductive plant phenology has primarily been analyzed using two summary statistics, the mean flowering day of year and first-flowering day of year, but mean flowering day has proven to be a more robust statistic. Two types of regression models have been applied to test for associations between flowering, temperature and time: flowering day regressed on year and flowering day regressed on temperature. Most studies analyzed the effect of temperature by averaging temperatures from three months prior to the date of flowering. On average, published studies have used 55 herbarium specimens per species to characterize changes in phenology over time, but in many cases fewer specimens were used. Geospatial grid data are increasingly being used for determining average temperatures at herbarium specimen collection locations, allowing testing for finer scale correspondence between phenology and climate. Multiple studies have shown that inferences from herbarium specimen data are comparable to findings from systematically collected field observations. Understanding phenological responses to climate change is a crucial step towards recognizing implications for higher trophic levels and large-scale ecosystem processes. As herbaria are increasingly being digitized worldwide, more data are becoming available for future studies. As temperatures continue to rise globally, herbarium specimens are expected to become an increasingly important resource for analyzing plant responses to climate change. |
format | Online Article Text |
id | pubmed-5888139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58881392018-04-09 Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications Jones, Casey A. Daehler, Curtis C. PeerJ Plant Science Studies in plant phenology have provided some of the best evidence for large-scale responses to recent climate change. Over the last decade, more than thirty studies have used herbarium specimens to analyze changes in flowering phenology over time, although studies from tropical environments are thus far generally lacking. In this review, we summarize the approaches and applications used to date. Reproductive plant phenology has primarily been analyzed using two summary statistics, the mean flowering day of year and first-flowering day of year, but mean flowering day has proven to be a more robust statistic. Two types of regression models have been applied to test for associations between flowering, temperature and time: flowering day regressed on year and flowering day regressed on temperature. Most studies analyzed the effect of temperature by averaging temperatures from three months prior to the date of flowering. On average, published studies have used 55 herbarium specimens per species to characterize changes in phenology over time, but in many cases fewer specimens were used. Geospatial grid data are increasingly being used for determining average temperatures at herbarium specimen collection locations, allowing testing for finer scale correspondence between phenology and climate. Multiple studies have shown that inferences from herbarium specimen data are comparable to findings from systematically collected field observations. Understanding phenological responses to climate change is a crucial step towards recognizing implications for higher trophic levels and large-scale ecosystem processes. As herbaria are increasingly being digitized worldwide, more data are becoming available for future studies. As temperatures continue to rise globally, herbarium specimens are expected to become an increasingly important resource for analyzing plant responses to climate change. PeerJ Inc. 2018-04-03 /pmc/articles/PMC5888139/ /pubmed/29632745 http://dx.doi.org/10.7717/peerj.4576 Text en ©2018 Jones and Daehler http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Plant Science Jones, Casey A. Daehler, Curtis C. Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title | Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title_full | Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title_fullStr | Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title_full_unstemmed | Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title_short | Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
title_sort | herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888139/ https://www.ncbi.nlm.nih.gov/pubmed/29632745 http://dx.doi.org/10.7717/peerj.4576 |
work_keys_str_mv | AT jonescaseya herbariumspecimenscanrevealimpactsofclimatechangeonplantphenologyareviewofmethodsandapplications AT daehlercurtisc herbariumspecimenscanrevealimpactsofclimatechangeonplantphenologyareviewofmethodsandapplications |