Cargando…
HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such...
Autores principales: | Azad, Ariful, Pavlopoulos, Georgios A, Ouzounis, Christos A, Kyrpides, Nikos C, Buluç, Aydin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888241/ https://www.ncbi.nlm.nih.gov/pubmed/29315405 http://dx.doi.org/10.1093/nar/gkx1313 |
Ejemplares similares
-
HMMConverter 1.0: a toolbox for hidden Markov models
por: Lam, Tin Yin, et al.
Publicado: (2009) -
HMMRATAC: a Hidden Markov ModeleR for ATAC-seq
por: Tarbell, Evan D, et al.
Publicado: (2019) -
PS-MCL: parallel shotgun coarsened Markov clustering of protein interaction networks
por: Lim, Yongsub, et al.
Publicado: (2019) -
Identifying protein interaction subnetworks by a bagging Markov random field-based method
por: Chen, Li, et al.
Publicado: (2013) -
Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model
por: Glas, Julia, et al.
Publicado: (2016)