Cargando…
S184. MACHINE LEARNING REVEALS DEVIANCE IN NEUROANATOMICAL MATURITY PREDICTIVE OF FUTURE PSYCHOSIS IN YOUTH AT CLINICAL HIGH RISK
BACKGROUND: Both early (pre- and perinatal) and late (adolescent) neurodevelopmental disturbances are hypothesized to contribute to the pathophysiology of schizophrenia. Disturbances originating earlier in life (e.g., resulting from the interplay of genetic factors and obstetric complications) would...
Autores principales: | Chung, Yoonho, Addington, Jean, Bearden, Carrie, Cadenhead, Kristen, Cornblatt, Barbara, Mathalon, Daniel, McGlashan, Thomas, Perkins, Diana, Seidman, Larry, Tsuang, Ming, Walker, Elaine, Woods, Scott, McEwen, Sarah, van Erp, Theo, Cannon, Tyrone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888296/ http://dx.doi.org/10.1093/schbul/sby018.971 |
Ejemplares similares
-
Discriminatory experiences predict neuroanatomical changes and anxiety among healthy individuals and those at clinical high risk for psychosis
por: Collins, Meghan A., et al.
Publicado: (2021) -
Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort
por: Chung, Yoonho, et al.
Publicado: (2019) -
T116. PREDICTION OF REMISSION IN NON-CONVERTING INDIVIDUALS AT CLINICAL HIGH RISK FOR PSYCHOSIS
por: Worthington, Michelle, et al.
Publicado: (2020) -
O3.2. BRAIN HYPERACTIVATION DURING MEMORY RETRIEVAL PRECEDES AND PREDICTS CONVERSION TO PSYCHOSIS IN INDIVIDUALS AT CLINICAL HIGH RISK
por: Cao, Hengyi, et al.
Publicado: (2018) -
S244. CHARACTERIZING OUTCOMES OF CLINICAL HIGH-RISK NON-CONVERTERS USING GROUP-BASED TRAJECTORY MODELING
por: Allswede, Dana, et al.
Publicado: (2018)